Heap Automata (ESOP 2017)

Christina Jansen¹ Jens Katelaan² Christoph Matheja¹ Thomas Noll¹ Florian Zuleger²

> ¹ RWTH Aachen University ² TU Wien

Shonan Meeting 2017, Japan

 Symbolic heaps emerged as an idiomatic SL fragment employed by various automated verification tools.

- Symbolic heaps emerged as an idiomatic SL fragment employed by various automated verification tools.
- These tools rely on systems of inductive predicate definitions (SID) as data structure specifications.

- Symbolic heaps emerged as an idiomatic SL fragment employed by various automated verification tools.
- These tools rely on systems of inductive predicate definitions (SID) as data structure specifications.
- Ongoing trend: Allow user-supplied SIDs instead of handcrafted ones.

- Symbolic heaps emerged as an idiomatic SL fragment employed by various automated verification tools.
- These tools rely on systems of inductive predicate definitions (SID) as data structure specifications.
- Ongoing trend: Allow user-supplied SIDs instead of handcrafted ones.
- We consider two problems: Given an SID...

- Symbolic heaps emerged as an idiomatic SL fragment employed by various automated verification tools.
- These tools rely on systems of inductive predicate definitions (SID) as data structure specifications.
- Ongoing trend: Allow user-supplied SIDs instead of handcrafted ones.
- We consider two problems: Given an SID...
 - 1 prove that it is **robust**.

- Symbolic heaps emerged as an idiomatic SL fragment employed by various automated verification tools.
- These tools rely on systems of inductive predicate definitions (SID) as data structure specifications.
- Ongoing trend: Allow user-supplied SIDs instead of handcrafted ones.
- We consider two problems: Given an SID...

1 prove that it is **robust**. — garbage-free, acyclic, satisfiable,...

- Symbolic heaps emerged as an idiomatic SL fragment employed by various automated verification tools.
- These tools rely on systems of inductive predicate definitions (SID) as data structure specifications.
- Ongoing trend: Allow user-supplied SIDs instead of handcrafted ones.
- We consider two problems: Given an SID...
 - **1** prove that it is **robust**. garbage-free, acyclic, satisfiable,...
 - 2 synthesize a robust SID from it.

Classical shape analysis properties: memory safety, ...

- Classical shape analysis properties: memory safety, ...
- Temporal properties:

- Classical shape analysis properties: memory safety, ...
- Temporal properties:
 - Every element is always reachable by either x or y

- Classical shape analysis properties: memory safety, ...
- Temporal properties:
 - $\hfill\blacksquare$ Every element is always reachable by either x or y
 - $\hfill\blacksquare$ Every element is eventually processed by procedure Q

- Classical shape analysis properties: memory safety, ...
- Temporal properties:
 - \blacksquare Every element is always reachable by either x or y
 - Every element is eventually processed by procedure Q
 - Whenever the heap contains garbage, it eventually does not

- Classical shape analysis properties: memory safety, ...
- Temporal properties:
 - Every element is always reachable by either x or y
 - $\hfill\blacksquare$ Every element is eventually processed by procedure Q
 - Whenever the heap contains garbage, it eventually does not
 - All elements belong to a tree until inserted into a list

- Classical shape analysis properties: memory safety, ...
- Temporal properties:
 - $\hfill\blacksquare$ Every element is always reachable by either x or y
 - $\hfill\blacksquare$ Every element is eventually processed by procedure Q
 - Whenever the heap contains garbage, it eventually does not
 - All elements belong to a tree until inserted into a list
 - If an element is stored in x it will forever be the root of a tree

- Classical shape analysis properties: memory safety, ...
- Temporal properties:
 - $\hfill\blacksquare$ Every element is always reachable by either x or y
 - $\hfill\blacksquare$ Every element is eventually processed by procedure Q
 - Whenever the heap contains garbage, it eventually does not
 - All elements belong to a tree until inserted into a list
 - If an element is stored in x it will forever be the root of a tree
 - In every state the heap is either a tree or a doubly-linked list

- Classical shape analysis properties: memory safety, ...
- Temporal properties:
 - $\hfill\blacksquare$ Every element is always reachable by either x or y
 - $\hfill\blacksquare$ Every element is eventually processed by procedure Q
 - Whenever the heap contains garbage, it eventually does not
 - All elements belong to a tree until inserted into a list
 - If an element is stored in x it will forever be the root of a tree
 - In every state the heap is either a tree or a doubly-linked list
 - The successors of every original input element are restored upon termination

How do we prove temporal properties about symbolic heaps?

Generate labeled transition system using shape analysis

- Generate labeled transition system using shape analysis
- \blacksquare Every state corresponds to an SL formula φ

- Generate labeled transition system using shape analysis
- \blacksquare Every state corresponds to an SL formula φ
- Apply standard model-checking to transition system

- Generate labeled transition system using shape analysis
- \blacksquare Every state corresponds to an SL formula φ
- Apply standard model-checking to transition system
- Problem: Prove $\varphi \models Prop$

- Generate labeled transition system using shape analysis
- \blacksquare Every state corresponds to an SL formula φ
- Apply standard model-checking to transition system
- Problem: Prove $\varphi \models Prop$ for a few million formulas φ

How do we prove temporal properties about symbolic heaps?

- Generate labeled transition system using shape analysis
- \blacksquare Every state corresponds to an SL formula φ
- Apply standard model-checking to transition system
- Problem: Prove $\varphi \models Prop$ for a few million formulas φ

1 Synthesize robust SID w.r.t. Prop

- Generate labeled transition system using shape analysis
- \blacksquare Every state corresponds to an SL formula φ
- Apply standard model-checking to transition system
- Problem: Prove $\varphi \models Prop$ for a few million formulas φ
 - 1 Synthesize robust SID w.r.t. Prop
 - 2 Run shape analysis space with new SID

- Generate labeled transition system using shape analysis
- \blacksquare Every state corresponds to an SL formula φ
- Apply standard model-checking to transition system
- Problem: Prove $\varphi \models Prop$ for a few million formulas φ
 - 1 Synthesize robust SID w.r.t. Prop
 - 2 Run shape analysis space with new SID
 - **3** Efficiently decide $\varphi \models Prop$ without looking into predicates

We formally capture robustness properties by heap automata

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

a decision procedure for SID robustness

a synthesis procedure

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

a decision procedure for SID robustness

a synthesis procedure and a complexity bound

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

- a synthesis procedure and a complexity bound
- Considered robustness properties include acyclicity, garbage-freedom, establishment, reachability, satisfiability...

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

- a synthesis procedure and a complexity bound
- Considered robustness properties include acyclicity, garbage-freedom, establishment, reachability, satisfiability...
- Implementation and experiments

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

- a synthesis procedure and a complexity bound
- Considered robustness properties include acyclicity, garbage-freedom, establishment, reachability, satisfiability...
- Implementation and experiments
 - Standalone tool for SL

- We formally capture robustness properties by heap automata
- We develop an algorithmic framework: For every heap automaton we obtain...

- a synthesis procedure and a complexity bound
- Considered robustness properties include acyclicity, garbage-freedom, establishment, reachability, satisfiability...
- Implementation and experiments
 - Standalone tool for SL
 - Part of model-checking within ATTESTOR

Symbolic Heaps with Inductive Predicates

Terms: $t ::= x \mid \text{null}$
Terms: $t ::= x \mid null$ Pure formulas: $\pi ::= t = t \mid t \neq t$ $(\Pi : \text{ set of pure formulas})$

emp is the empty heap

Terms: $t ::= x \mid null$ Pure formulas: $\pi ::= t = t \mid t \neq t$ (Π : set of pure formulas)Spatial formulas: $\Sigma ::= emp \mid x \mapsto t \mid$ (t: tuple of terms)

- emp is the empty heap
- $\blacksquare \ x \mapsto {\bf t}$ is a pointer to a single record

Terms:	$t ::= x \mid \texttt{null}$
Pure formulas:	$\pi \ ::= t = t \ \ t eq t \qquad (\Pi: \ { m set \ of \ pure \ formulas})$
Spatial formulas:	$\Sigma ::= \exp x \mapsto \mathbf{t} \Sigma * \Sigma (\mathbf{t} : \text{ tuple of terms})$

- emp is the empty heap
- $\blacksquare \ x \mapsto {\bf t}$ is a pointer to a single record
- * is the separating conjunction of two domain-disjoint heaps.

Terms:	$t ::= x \mid \texttt{null}$
Pure formulas:	$\pi ::= t = t \mid t \neq t$ (II : set of pure formulas)
Spatial formulas:	$\Sigma \ ::= \operatorname{emp} \ \ x \mapsto \mathbf{t} \ \ \Sigma * \Sigma (\mathbf{t} : \ \operatorname{tuple \ of \ terms})$
Predicate calls:	$\Gamma \ ::= \operatorname{emp} \ \ P(\mathbf{t}) \ \ \Gamma * \Gamma (P: \ \operatorname{predicate \ symbol})$

- emp is the empty heap
- $\blacksquare \ x \mapsto {\bf t}$ is a pointer to a single record
- * is the separating conjunction of two domain-disjoint heaps.

- emp is the empty heap
- $x \mapsto \mathbf{t}$ is a pointer to a single record
- * is the separating conjunction of two domain-disjoint heaps.

- emp is the empty heap
- $x \mapsto \mathbf{t}$ is a pointer to a single record
- * is the separating conjunction of two domain-disjoint heaps.

Systems of Inductive Definitions (SIDs)

An SID Φ is a finite set of rules of the form

 $\exists \mathbf{z} \, . \, \Sigma \, \ast \, \Gamma \, : \, \Pi \, \Rightarrow \, P(\mathbf{x})$

Systems of Inductive Definitions (SIDs)

An SID Φ is a finite set of rules of the form

 $\exists \mathbf{z} \, . \, \Sigma \, \ast \, \Gamma \, : \, \Pi \, \Rightarrow \, P(\mathbf{x})$

Example (Binary trees)

$$\begin{split} & \texttt{emp} \,:\, \{x = \texttt{null}\} \;\Rightarrow \textit{tree}(x) \\ \exists y, z \,:\, x \mapsto (y, z) * \textit{tree}(y) * \textit{tree}(z) \;\Rightarrow \textit{tree}(x) \end{split}$$

Systems of Inductive Definitions (SIDs)

An SID Φ is a finite set of rules of the form

 $\exists \mathbf{z} \, . \, \Sigma \, \ast \, \Gamma \, : \, \Pi \, \Rightarrow \, P(\mathbf{x})$

Example (Binary trees)

$$\begin{split} & \texttt{emp} \,:\, \{x = \texttt{null}\} \;\Rightarrow \textit{tree}(x) \\ \exists y, z \, . \, x \mapsto (y, z) * \textit{tree}(y) * \textit{tree}(z) \;\Rightarrow \textit{tree}(x) \end{split}$$

Semantics of predicate calls is given by unfolding to reduced SHs collected in $unfold_{\Phi}(P(\mathbf{x}))$.

Robustness Properties

Robustness properties are sets of reduced symbolic heaps (RSH).

Robustness properties are sets of reduced symbolic heaps (RSH).

Example

 $\operatorname{Established:}$ no dangling pointers

Robustness properties are sets of reduced symbolic heaps (RSH).

Example

 $\operatorname{Established:}$ no dangling pointers

 $\operatorname{SAT:}$ all satisfiable RSHs

Robustness properties are sets of reduced symbolic heaps (RSH).

Example

 $\operatorname{Established:}$ no dangling pointers

 $\operatorname{SAT}:$ all satisfiable RSHs

 $\operatorname{GarbageFree:}$ Every location is reachable from a free variable

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \, \cdot \quad \Sigma \quad * \ P_1(z_1, z_2) \, * \, P_2(z_2, y) \; : \; \Pi$$

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \, \cdot \, \underbrace{\sum_{x \mapsto z_1} * \underbrace{P_1(z_1, z_2)}_{z_1 = z_2} * \underbrace{P_2(z_2, y)}_{z_2 \mapsto y} \, : \, \Pi$$

Is y reachable from x in P(x, y)?

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \, \cdot \, \underbrace{\sum_{x \mapsto z_1} * \underbrace{P_1(z_1, z_2)}_{z_1 = z_2} * \underbrace{P_2(z_2, y)}_{z_2 \mapsto y} \, : \, \Pi$$

Reachability might depend on unfoldings of all predicates

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \, \cdot \, \underbrace{\sum_{x \mapsto z_1}}_{x \mapsto z_1} * \underbrace{P_1(z_1, z_2)}_{z_1 = z_2} * \underbrace{P_2(z_2, y)}_{z_2 \mapsto y} \; : \; \Pi$$

- Reachability might depend on unfoldings of all predicates
- How do we know that some other predicate does not invalidate reachability, e.g. z₁ ≠ z₂?

Is y reachable from x in P(x, y)?

. . .

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \cdot \underbrace{\sum_{x \mapsto z_1}}_{x \mapsto z_1} * \underbrace{P_1(z_1, z_2)}_{z_1 = z_2} * \underbrace{P_2(z_2, y)}_{z_2 \mapsto y} : \Pi$$

- Reachability might depend on unfoldings of all predicates
- How do we know that some other predicate does not invalidate reachability, e.g. z₁ ≠ z₂?
- How do we prove reachability for

Is y reachable from x in P(x, y)?

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \cdot \underbrace{\sum_{x \mapsto z_1}}_{x \mapsto z_1} * \underbrace{P_1(z_1, z_2)}_{z_1 = z_2} * \underbrace{P_2(z_2, y)}_{z_2 \mapsto y} : \Pi$$

- Reachability might depend on unfoldings of all predicates
- How do we know that some other predicate does not invalidate reachability, e.g. z₁ ≠ z₂?
- How do we prove reachability for

all unfoldings

Is y reachable from x in P(x, y)?

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \, \cdot \, \underbrace{\sum_{x \mapsto z_1}}_{x \mapsto z_1} * \underbrace{P_1(z_1, z_2)}_{z_1 = z_2} * \underbrace{P_2(z_2, y)}_{z_2 \mapsto y} \; : \; \Pi$$

- Reachability might depend on unfoldings of all predicates
- How do we know that some other predicate does not invalidate reachability, e.g. z₁ ≠ z₂?
- How do we prove reachability for

all unfoldings

of arbitrary symbolic heaps

Is y reachable from x in P(x, y)?

. . .

$$P(x,y) \xrightarrow{\text{unfold}} \exists (z_1, z_2) \cdot \underbrace{\sum_{x \mapsto z_1}}_{x \mapsto z_1} * \underbrace{P_1(z_1, z_2)}_{z_1 = z_2} * \underbrace{P_2(z_2, y)}_{z_2 \mapsto y} : \Pi$$

- Reachability might depend on unfoldings of all predicates
- How do we know that some other predicate does not invalidate reachability, e.g. z₁ ≠ z₂?
- How do we prove reachability for

all unfoldings

of arbitrary symbolic heaps

in arbitrary SIDs?

We reason compositionally while unfolding a symbolic heap

$$\varphi(\mathbf{x}) = \exists \mathbf{z} \, . \, \Sigma * P_1(\mathbf{x}_1) * \ldots * P_m(\mathbf{x}_m) : \Pi$$

We reason compositionally while unfolding a symbolic heap

$$\varphi(\mathbf{x}) = \exists \mathbf{z} \cdot \Sigma * \overbrace{P_1(\mathbf{x}_1)}^{\text{property } q_1} * \dots * \overbrace{P_m(\mathbf{x}_m)}^{\text{property } q_m} : \Pi$$

Soundness: If P_k has an unfolding with property q_k $(1 \le k \le m)$

We reason compositionally while unfolding a symbolic heap

$$\varphi(\mathbf{x}) = \underbrace{\exists \mathbf{z} \, . \, \Sigma \, * \, \overbrace{P_1(\mathbf{x}_1)}^{\text{property } q_1} \ast \ldots \ast \, \overbrace{P_m(\mathbf{x}_m)}^{\text{property } q_m} : \Pi}_{\text{property } q}$$

Soundness: If P_k has an unfolding with property q_k $(1 \le k \le m)$ and for those unfoldings $\varphi(\mathbf{x})$ has property q

We reason compositionally while unfolding a symbolic heap

$$\varphi(\mathbf{x}) = \underbrace{\exists \mathbf{z} \, . \, \Sigma \, * \, \overbrace{P_1(\mathbf{x}_1)}^{\text{property } q_1} \ast \ldots \ast \, \overbrace{P_m(\mathbf{x}_m)}^{\text{property } q_m} : \Pi}_{\text{property } q}$$

Soundness: If P_k has an unfolding with property q_k $(1 \le k \le m)$ and for those unfoldings $\varphi(\mathbf{x})$ has property q then $\varphi(\mathbf{x})$ has an unfolding with property q.

We reason compositionally while unfolding a symbolic heap

$$\varphi(\mathbf{x}) = \underbrace{\exists \mathbf{z} \, . \, \Sigma \, * \, \overbrace{P_1(\mathbf{x}_1)}^{\text{property } q_1} \ast \ldots \ast \, \overbrace{P_m(\mathbf{x}_m)}^{\text{property } q_m} : \Pi}_{\text{property } q}$$

Soundness: If P_k has an unfolding with property q_k $(1 \le k \le m)$ and for those unfoldings $\varphi(\mathbf{x})$ has property q then $\varphi(\mathbf{x})$ has an unfolding with property q.

Completeness: If $\varphi(\mathbf{x})$ has an unfolding with property q

We reason compositionally while unfolding a symbolic heap

$$\varphi(\mathbf{x}) = \underbrace{\exists \mathbf{z} \, . \, \Sigma \, * \, \overbrace{P_1(\mathbf{x}_1)}^{\text{property } q_1} \ast \ldots \ast \, \overbrace{P_m(\mathbf{x}_m)}^{\text{property } q_m} : \Pi}_{\text{property } q}$$

Soundness: If P_k has an unfolding with property q_k $(1 \le k \le m)$ and for those unfoldings $\varphi(\mathbf{x})$ has property q then $\varphi(\mathbf{x})$ has an unfolding with property q.

Completeness: If $\varphi(\mathbf{x})$ has an unfolding with property q then there are unfoldings of P_k with some property q_k

We reason compositionally while unfolding a symbolic heap

$$\varphi(\mathbf{x}) = \underbrace{\exists \mathbf{z} \, . \, \Sigma \, * \, \overbrace{P_1(\mathbf{x}_1)}^{\text{property } q_1} \ast \ldots \ast \, \overbrace{P_m(\mathbf{x}_m)}^{\text{property } q_m} : \Pi}_{\text{property } q}$$

Soundness: If P_k has an unfolding with property q_k $(1 \le k \le m)$ and for those unfoldings $\varphi(\mathbf{x})$ has property q then $\varphi(\mathbf{x})$ has an unfolding with property q.

Completeness: If $\varphi(\mathbf{x})$ has an unfolding with property q then there are unfoldings of P_k with some property q_k and for those unfoldings $\varphi(\mathbf{x})$ has property q.

Definition

A heap automaton is a tuple $\mathcal{A}=(Q,\rightarrow,F),$ where

Definition

A heap automaton is a tuple $\mathcal{A}=(Q,\rightarrow,F),$ where

Q is a finite set of states,

Definition

A heap automaton is a tuple $\mathcal{A}=(Q,\rightarrow,F),$ where

- Q is a finite set of states,
- $F \subseteq Q$ is a set of final states, and

Definition

A heap automaton is a tuple $\mathcal{A} = (Q, \rightarrow, F)$, where

- Q is a finite set of states,
- $F \subseteq Q$ is a set of final states, and
- $\blacksquare \rightarrow \,\subseteq\, Q^* \times {\it SH} \times Q$ is a transition relation such that

Definition

A heap automaton is a tuple $\mathcal{A} = (Q, \rightarrow, F)$, where

- Q is a finite set of states,
- $F \subseteq Q$ is a set of final states, and
- $\blacksquare \rightarrow \,\subseteq\, Q^* \times {\it SH} \times Q$ is a transition relation such that

 \blacksquare \rightarrow is compositional (prev. slide), and

Definition

A heap automaton is a tuple $\mathcal{A} = (Q, \rightarrow, F)$, where

- Q is a finite set of states,
- $F \subseteq Q$ is a set of final states, and
- $\blacksquare \rightarrow \,\subseteq \, Q^* \times \mathit{SH} \times Q$ is a transition relation such that
 - \blacksquare \rightarrow is compositional (prev. slide), and
 - $\blacksquare \rightarrow$ is decidable.
Heap Automata: Definition

Definition

A heap automaton is a tuple $\mathcal{A} = (Q, \rightarrow, F)$, where

- Q is a finite set of states,
- $F \subseteq Q$ is a set of final states, and
- $\blacksquare \rightarrow \,\subseteq \, Q^* \times \mathit{SH} \times Q$ is a transition relation such that

 \blacksquare \rightarrow is compositional (prev. slide), and

 $\blacksquare \rightarrow$ is decidable.

The language L(A) of heap automaton A is the set of all reduced symbolic heaps with a transition to a final state.

Heap Automata: Results Given SID Φ ,

Given SID $\Phi,$ heap automaton $\mathcal A,$ and

Given SID Φ , heap automaton \mathcal{A} , and symbolic heap $\varphi(\mathbf{x})...$

Given SID $\Phi,$ heap automaton $\mathcal A,$ and symbolic heap $\varphi(\mathbf x). \ldots$

Theorem (Refinement Theorem)

One can effectively construct an SID Ψ such that $\forall P : unfold_{\Psi}(P(\mathbf{x})) = unfold_{\Phi}(P(\mathbf{x})) \cap L(\mathcal{A}).$

Given SID $\Phi,$ heap automaton $\mathcal A,$ and symbolic heap $\varphi(\mathbf x). \ldots$

Theorem (Refinement Theorem)

One can effectively construct an SID Ψ such that $\forall P : unfold_{\Psi}(P(\mathbf{x})) = unfold_{\Phi}(P(\mathbf{x})) \cap L(\mathcal{A}).$

1
$$\textit{size}(\Psi) \leq \textit{size}(\Phi) \cdot \textit{size}(\mathcal{A})^{\#\textit{pred. calls}}$$

Given SID $\Phi,$ heap automaton $\mathcal A,$ and symbolic heap $\varphi(\mathbf x). \ldots$

Theorem (Refinement Theorem)

One can effectively construct an SID Ψ such that $\forall P : unfold_{\Psi}(P(\mathbf{x})) = unfold_{\Phi}(P(\mathbf{x})) \cap L(\mathcal{A}).$

Theorem

1 $size(\Psi) \leq size(\Phi) \cdot size(\mathcal{A})^{\#pred. calls}$

2 It is decidable in linear time whether $unfold_{\Phi}(\varphi(\mathbf{x}))$ is empty.

Given SID $\Phi,$ heap automaton $\mathcal A,$ and symbolic heap $\varphi(\mathbf x). \ldots$

Theorem (Refinement Theorem)

One can effectively construct an SID Ψ such that $\forall P : unfold_{\Psi}(P(\mathbf{x})) = unfold_{\Phi}(P(\mathbf{x})) \cap L(\mathcal{A}).$

- 1 $size(\Psi) \leq size(\Phi) \cdot size(\mathcal{A})^{\#pred. calls}$
- **2** It is decidable in linear time whether $unfold_{\Phi}(\varphi(\mathbf{x}))$ is empty.
- 3 Languages of heap automata are effectively closed under union, intersection and complement.

Given SID $\Phi,$ heap automaton $\mathcal A,$ and symbolic heap $\varphi(\mathbf x). \ldots$

Theorem (Refinement Theorem)

One can effectively construct an SID Ψ such that $\forall P : unfold_{\Psi}(P(\mathbf{x})) = unfold_{\Phi}(P(\mathbf{x})) \cap L(\mathcal{A}).$

- 1 $size(\Psi) \leq size(\Phi) \cdot size(\mathcal{A})^{\#pred. calls}$
- **2** It is decidable in linear time whether $unfold_{\Phi}(\varphi(\mathbf{x}))$ is empty.
- 3 Languages of heap automata are effectively closed under union, intersection and complement.
- 4 It is decidable whether $unfold_{\Phi}(\varphi(\mathbf{x})) \cap L(\mathcal{A}) \neq \emptyset$.

Given SID $\Phi,$ heap automaton $\mathcal A,$ and symbolic heap $\varphi(\mathbf x). \ldots$

Theorem (Refinement Theorem)

One can effectively construct an SID Ψ such that $\forall P : unfold_{\Psi}(P(\mathbf{x})) = unfold_{\Phi}(P(\mathbf{x})) \cap L(\mathcal{A}).$

- 1 $size(\Psi) \leq size(\Phi) \cdot size(\mathcal{A})^{\#pred. calls}$
- **2** It is decidable in linear time whether $unfold_{\Phi}(\varphi(\mathbf{x}))$ is empty.
- 3 Languages of heap automata are effectively closed under union, intersection and complement.
- 4 It is decidable whether $unfold_{\Phi}(\varphi(\mathbf{x})) \cap L(\mathcal{A}) \neq \emptyset$.
- **5** It is decidable whether $unfold_{\Phi}(\varphi(\mathbf{x})) \subseteq L(\mathcal{A})$.

We constructed heap automata for the following properties: Property

We constructed heap automata for the following properties:

Property satisfiability

We constructed heap automata for the following properties:

Property satisfiability model-checking

We constructed heap automata for the following properties:

Property satisfiability model-checking garbage-freedom

We constructed heap automata for the following properties:

Property satisfiability model-checking garbage-freedom acyclicity

We constructed heap automata for the following properties:

Property satisfiability model-checking garbage-freedom acyclicity reachability

We constructed heap automata for the following properties:

Property satisfiability model-checking garbage-freedom acyclicity reachability establishment

We constructed heap automata for the following properties:

Property	Complexity
satisfiability	EXPTIME-C ¹
model-checking	$ExpTIME-C^1$
garbage-freedom	
acyclicity	
reachability	
establishment	

¹ (Brotherston et al., 2014) and (Brotherston et al., 2016)

We constructed heap automata for the following properties:

Property	Complexity
satisfiability	$ExpTime-C^1$
model-checking	$EXPTIME-C^1$
garbage-freedom	EXPTIME-C
acyclicity	EXPTIME-C
reachability	EXPTIME-C
establishment	EXPTIME-C

 1 (Brotherston et al., 2014) and (Brotherston et al., 2016)

We constructed heap automata for the following properties:

Property	Complexity	FV bounded
satisfiability	ExpTime-C ¹	
model-checking	EXPTIME-C ¹	
garbage-freedom	EXPTIME-C	
acyclicity	EXPTIME-C	
reachability	EXPTIME-C	
establishment	EXPTIME-C	

 1 (Brotherston et al., 2014) and (Brotherston et al., 2016)

We constructed heap automata for the following properties:

Property	Complexity	FV bounded
satisfiability	ExpTime-C ¹	NP-C ¹
model-checking	EXPTIME-C ¹	NP-C ¹
garbage-freedom	EXPTIME-C	
acyclicity	EXPTIME-C	
reachability	EXPTIME-C	
establishment	EXPTIME-C	

¹ (Brotherston et al., 2014) and (Brotherston et al., 2016)

We constructed heap automata for the following properties:

Property	Complexity	FV bounded
satisfiability	ExpTime-C ¹	NP-C ¹
model-checking	$ExpTime-C^1$	NP-C ¹
garbage-freedom	EXPTIME-C	coNP-C
acyclicity	EXPTIME-C	coNP-C
reachability	EXPTIME-C	coNP-C
establishment	EXPTIME-C	coNP-C

 1 (Brotherston et al., 2014) and (Brotherston et al., 2016)

We constructed heap automata for the following properties:

Property	Complexity	FV bounded
satisfiability	EXPTIME-C ¹	NP-C ¹
model-checking	$ExpTime-C^1$	NP-C ¹
garbage-freedom	ExpTime-C	CONP-C
acyclicity	ExpTime-C	CONP-C
reachability	EXPTIME-C	coNP-C
establishment	EXPTIME-C	coNP-C

¹ (Brotherston et al., 2014) and (Brotherston et al., 2016)

All of these problems are PTIME-complete for an additionally bounded number of predicate calls.

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

Implemented framework and heap automata in Scala

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties
- Notable exception: CYCLIST can check satisfiability

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties
- Notable exception: CYCLIST can check satisfiability
- Benchmarks are taken from CYCLIST

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties
- Notable exception: CYCLIST can check satisfiability
- Benchmarks are taken from CYCLIST
- 8 common SIDs from the literature: 0.3s to check all robustness properties.

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties
- Notable exception: CYCLIST can check satisfiability
- Benchmarks are taken from CYCLIST
- 8 common SIDs from the literature: 0.3s to check all robustness properties.
- 45945 SIDs generated by CABER from C source code

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties
- Notable exception: CYCLIST can check satisfiability
- Benchmarks are taken from CYCLIST
- 8 common SIDs from the literature: 0.3s to check all robustness properties.
- 45945 SIDs generated by CABER from C source code
 - Satisfiability: HARRSH: 12.5s CYCLIST: 44.9s

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties
- Notable exception: CYCLIST can check satisfiability
- Benchmarks are taken from CYCLIST
- 8 common SIDs from the literature: 0.3s to check all robustness properties.
- 45945 SIDs generated by CABER from C source code
 - Satisfiability: HARRSH: 12.5s CYCLIST: 44.9s
 - Other robustness properties: ranging from 7.2s to 18.5s

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

- Implemented framework and heap automata in Scala
- No other tool supports checking robustness properties
- Notable exception: CYCLIST can check satisfiability
- Benchmarks are taken from CYCLIST
- 8 common SIDs from the literature: 0.3s to check all robustness properties.
- 45945 SIDs generated by CABER from C source code
 - Satisfiability: HARRSH: 12.5s CYCLIST: 44.9s
 - Other robustness properties: ranging from 7.2s to 18.5s
- Satisfiability on worst-case instance HARRSH: 169s CYCLIST: 164s

¹Heap Automata for Reasoning about Robustness of Symbolic Heaps

Application to Model-Checking

Implemented framework and heap automata in ATTESTOR

Application to Model-Checking

- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:

Application to Model-Checking

- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:
 - Reachability
- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:
 - Reachability
 - Acyclicity

- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:
 - Reachability
 - Acyclicity
 - Garbage-Freedom

- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:
 - Reachability
 - Acyclicity
 - Garbage-Freedom
 - Reachability

- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:
 - Reachability
 - Acyclicity
 - Garbage-Freedom
 - Reachability
 - Shape: The heap is a tree, sll, dll...

- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:
 - Reachability
 - Acyclicity
 - Garbage-Freedom
 - Reachability
 - Shape: The heap is a tree, sll, dll...
 - Completeness: Every element of the initial heap has been accessed (by a given variable)

- Implemented framework and heap automata in ATTESTOR
- Supported heap automata in LTL formulas:
 - Reachability
 - Acyclicity
 - Garbage-Freedom
 - Reachability
 - Shape: The heap is a tree, sll, dll...
 - Completeness: Every element of the initial heap has been accessed (by a given variable)
 - Preservation: The successors of each element are as in the initial heap

A few Experiments

- 2.9GHz Intel Core i5 Laptop, JVM limited to 2GB of RAM
- State space generation (SSG): null pointer dereferences, memory leaks

Program	Property	SSG (s)	Model-Checking (s)
SLL.reversal	reachability	0.12	0.02
SLL.reversal	completeness	0.13	0.02
DLL.traversal	completeness	0.24	0.10
DLL.traversal	preservation	0.33	0.32
DLL.reversal	shape	0.14	0.05
DLL.reversal	reachability	0.18	0.02
DLL.reversal	completeness	0.24	0.15
BT.lindstrom	term. at root	0.19	0.03
BT.lindstrom	shape	0.20	0.17
BT.lindstrom	completeness	0.62	0.46
BT.lindstrom	preservation	0.38	0.70

Heap automata...

• ... can generate counterexamples for robustness properties

- ... can generate counterexamples for robustness properties
- ... can be applied to discharge certain entailments

- ... can generate counterexamples for robustness properties
- ... can be applied to discharge certain entailments
 - restricted to SHs φ , ψ and SID Φ without dangling pointers

- ... can generate counterexamples for robustness properties
- ... can be applied to discharge certain entailments
 - \blacksquare restricted to SHs $\varphi,\,\psi$ and SID Φ without dangling pointers
 - siven heap automata for all predicates in Φ , it is decidable whether $\varphi \models_{\Phi} \psi$.

- ... can generate counterexamples for robustness properties
-can be applied to discharge certain entailments
 - \blacksquare restricted to SHs $\varphi,\,\psi$ and SID Φ without dangling pointers
 - siven heap automata for all predicates in Φ , it is decidable whether $\varphi \models_{\Phi} \psi$.
 - enables systematic approach to construct entailment checkers

- ... can generate counterexamples for robustness properties
-can be applied to discharge certain entailments
 - \blacksquare restricted to SHs $\varphi,\,\psi$ and SID Φ without dangling pointers
 - siven heap automata for all predicates in Φ , it is decidable whether $\varphi \models_{\Phi} \psi$.
 - enables systematic approach to construct entailment checkers
 - entailments are decidable in EXPTIME if heap automata are at most exponentially large.

 Algorithmic framework for deciding and synthesizing robustness properties based on heap automata

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties
- Robustness checker:

https://bitbucket.org/jkatelaan/harrsh

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties
- Robustness checker: https://bitbucket.org/jkatelaan/harrsh
- Shape analysis + model-checking: https://moves-rwth.github.io/attestor

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties
- Robustness checker: https://bitbucket.org/jkatelaan/harrsh
- Shape analysis + model-checking: https://moves-rwth.github.io/attestor

Future Work

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties
- Robustness checker: https://bitbucket.org/jkatelaan/harrsh
- Shape analysis + model-checking: https://moves-rwth.github.io/attestor

Future Work

More robustness properties

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties
- Robustness checker: https://bitbucket.org/jkatelaan/harrsh
- Shape analysis + model-checking: https://moves-rwth.github.io/attestor

Future Work

- More robustness properties
- More experiments

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties
- Robustness checker: https://bitbucket.org/jkatelaan/harrsh
- Shape analysis + model-checking: https://moves-rwth.github.io/attestor

Future Work

- More robustness properties
- More experiments
- Characterization of data structures that can be specified by heap automata

- Algorithmic framework for deciding and synthesizing robustness properties based on heap automata
- Complexity analysis for common robustness properties
- Robustness checker: https://bitbucket.org/jkatelaan/harrsh
- Shape analysis + model-checking: https://moves-rwth.github.io/attestor

Future Work

- More robustness properties
- More experiments
- Characterization of data structures that can be specified by heap automata

Synthesize heap automata from backward-confluent SIDs?

Backup Slides

Definition

A heap automaton $\mathfrak{A}=(Q,\textit{SH}_{\mathcal{C}},\rightarrow,F)$ is compositional if

Definition

A heap automaton $\mathfrak{A} = (Q, SH_{\mathcal{C}}, \rightarrow, F)$ is compositional if for every $p \in Q$ and every $\varphi \in SH_{\mathcal{C}}$ with predicate calls P_1, \ldots, P_m and all reduced symbolic heaps $\tau_1, \ldots, \tau_m \in RSH_{\mathcal{C}}$:

Definition

A heap automaton $\mathfrak{A} = (Q, SH_{\mathcal{C}}, \rightarrow, F)$ is compositional if for every $p \in Q$ and every $\varphi \in SH_{\mathcal{C}}$ with predicate calls P_1, \ldots, P_m and all reduced symbolic heaps $\tau_1, \ldots, \tau_m \in RSH_{\mathcal{C}}$:

$$\exists \mathbf{q} \in Q^m \ . \ \mathbf{q} \xrightarrow{\varphi} p$$

Definition

A heap automaton $\mathfrak{A} = (Q, SH_{\mathcal{C}}, \rightarrow, F)$ is compositional if for every $p \in Q$ and every $\varphi \in SH_{\mathcal{C}}$ with predicate calls P_1, \ldots, P_m and all reduced symbolic heaps $\tau_1, \ldots, \tau_m \in RSH_{\mathcal{C}}$:

$$\exists \mathbf{q} \in Q^m \ . \ \mathbf{q} \xrightarrow{\varphi} p \quad \text{and} \quad \bigwedge_{1 \leq i \leq m} \varepsilon \xrightarrow{\tau_i} \mathbf{q}[i]$$

Definition

A heap automaton $\mathfrak{A} = (Q, SH_{\mathcal{C}}, \rightarrow, F)$ is compositional if for every $p \in Q$ and every $\varphi \in SH_{\mathcal{C}}$ with predicate calls P_1, \ldots, P_m and all reduced symbolic heaps $\tau_1, \ldots, \tau_m \in RSH_{\mathcal{C}}$:

$$\exists \mathbf{q} \in Q^m \ . \ \mathbf{q} \xrightarrow{\varphi} p \quad \text{and} \quad \bigwedge_{1 \leq i \leq m} \varepsilon \xrightarrow{\tau_i} \mathbf{q}[i]$$

if and only if

Definition

A heap automaton $\mathfrak{A} = (Q, SH_{\mathcal{C}}, \rightarrow, F)$ is compositional if for every $p \in Q$ and every $\varphi \in SH_{\mathcal{C}}$ with predicate calls P_1, \ldots, P_m and all reduced symbolic heaps $\tau_1, \ldots, \tau_m \in RSH_{\mathcal{C}}$:

$$\exists \mathbf{q} \in Q^m \ . \ \mathbf{q} \xrightarrow{\varphi} p \quad \text{and} \quad \bigwedge_{1 \leq i \leq m} \varepsilon \xrightarrow{\tau_i} \mathbf{q}[i]$$

if and only if

$$\varepsilon \xrightarrow{\varphi[P_1/\tau_1,\dots,P_m/\tau_m]} p$$

Definition

A heap automaton $\mathfrak{A} = (Q, SH_{\mathcal{C}}, \rightarrow, F)$ is compositional if for every $p \in Q$ and every $\varphi \in SH_{\mathcal{C}}$ with predicate calls P_1, \ldots, P_m and all reduced symbolic heaps $\tau_1, \ldots, \tau_m \in RSH_{\mathcal{C}}$:

$$\exists \mathbf{q} \in Q^m \ . \ \mathbf{q} \xrightarrow{\varphi} p \quad \text{and} \quad \bigwedge_{1 \leq i \leq m} \varepsilon \xrightarrow{\tau_i} \mathbf{q}[i]$$

if and only if

$$\varepsilon \xrightarrow{\varphi[P_1/\tau_1,\dots,P_m/\tau_m]} p$$

 $L(\mathfrak{A}) \triangleq \{ \tau \in \mathsf{RSH}_{\mathcal{C}} \mid \exists p \in F : \varepsilon \xrightarrow{\tau} p \}$

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps $\varphi,\psi,$ decide whether

$$\varphi \models_{\Phi} \psi \iff \forall s, h \ . \ s, h \models_{\Phi} \varphi \text{ implies } s, h \models_{\Phi} \psi$$

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps φ, ψ , decide whether

$$\varphi \models_{\Phi} \psi \iff \forall s, h \ . \ s, h \models_{\Phi} \varphi \text{ implies } s, h \models_{\Phi} \psi$$

 Crucial for automated program verification based on separation logic

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps φ, ψ , decide whether

$$\varphi \models_{\Phi} \psi \iff \forall s, h \ . \ s, h \models_{\Phi} \varphi \text{ implies } s, h \models_{\Phi} \psi$$

- Crucial for automated program verification based on separation logic
- Antonopolous et al.: The entailment problem is undecidable

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps φ, ψ , decide whether

$$\varphi \models_{\Phi} \psi \iff \forall s, h . s, h \models_{\Phi} \varphi \text{ implies } s, h \models_{\Phi} \psi$$

- Crucial for automated program verification based on separation logic
- Antonopolous et al.: The entailment problem is undecidable
- Most tools use highly-sepcialized techniques for fixed SIDs

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps φ, ψ , decide whether

$$\varphi \models_{\Phi} \psi \iff \forall s, h . s, h \models_{\Phi} \varphi \text{ implies } s, h \models_{\Phi} \psi$$

- Crucial for automated program verification based on separation logic
- Antonopolous et al.: The entailment problem is undecidable
- Most tools use highly-sepcialized techniques for fixed SIDs
- Our approach: Use heap automata as framework instead
Definition

 A reduced symbolic heap is well-determined if it is satisfiable and all of its models are isomorphic.

Definition

- A reduced symbolic heap is well-determined if it is satisfiable and all of its models are isomorphic.
- A symbolic heap is well-determined if its unfoldings are.

Definition

- A reduced symbolic heap is well-determined if it is satisfiable and all of its models are isomorphic.
- A symbolic heap is well-determined if its unfoldings are.
- An SID is well-determined if all symbolic heaps in its rules are.

Definition

- A reduced symbolic heap is well-determined if it is satisfiable and all of its models are isomorphic.
- A symbolic heap is well-determined if its unfoldings are.
- An SID is well-determined if all symbolic heaps in its rules are.

Example

$$\tau(x) \triangleq \exists z.x \mapsto z : \{x \neq z\}$$

$$\varphi(x) \triangleq \exists z.x \mapsto z * z \mapsto \text{null}$$

not well-determined well-determined

Entailment between Predicates

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank.

Entailment between Predicates

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank.

Then $P(\mathbf{x}) \models_{\Phi} Q(\mathbf{x})$ is decidable if there is a heap automaton accepting

 $L(P,\Phi) \triangleq \{\sigma \in \mathsf{RSH}_{\mathcal{C}} \mid \exists \tau \in \mathsf{unfold}_{\Phi}(Q) \ . \ \sigma \models \tau \}.$

Entailment between Predicates

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank.

Then $P(\mathbf{x}) \models_{\Phi} Q(\mathbf{x})$ is decidable if there is a heap automaton accepting

$$L(P,\Phi) \ \triangleq \ \{\sigma \in \textit{RSH}_{\mathcal{C}} \ | \ \exists \tau \in \textit{unfold}_{\Phi}(Q) \ . \ \sigma \models \tau \}.$$

Example

(cyclic, doubly-linked) lists, skip-lists, trees, ...

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank.

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank. Moreover, let $\varphi(\mathbf{x})$, $\psi(\mathbf{x})$ be well-determined symbolic heaps over C.

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank. Moreover, let $\varphi(\mathbf{x})$, $\psi(\mathbf{x})$ be well-determined symbolic heaps over C.

Then $\varphi(\mathbf{x}) \models_{\Phi} \psi(\mathbf{x})$ is decidable if there is a heap automaton $\mathfrak{A}(P)$ accepting $L(P, \Phi)$ for each predicate name P occurring in Φ .

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank. Moreover, let $\varphi(\mathbf{x})$, $\psi(\mathbf{x})$ be well-determined symbolic heaps over C.

Then $\varphi(\mathbf{x}) \models_{\Phi} \psi(\mathbf{x})$ is decidable if there is a heap automaton $\mathfrak{A}(P)$ accepting $L(P, \Phi)$ for each predicate name P occurring in Φ .

Theorem

For each automaton $\mathfrak{A}(P)$ from above, let $|Q_{\mathfrak{A}(P)}| \leq 2^{\text{poly}(\alpha)}$ and $| \rightarrow_{\mathfrak{A}(P)} |$ be decidable in EXPTIME.

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank. Moreover, let $\varphi(\mathbf{x})$, $\psi(\mathbf{x})$ be well-determined symbolic heaps over C.

Then $\varphi(\mathbf{x}) \models_{\Phi} \psi(\mathbf{x})$ is decidable if there is a heap automaton $\mathfrak{A}(P)$ accepting $L(P, \Phi)$ for each predicate name P occurring in Φ .

Theorem

For each automaton $\mathfrak{A}(P)$ from above, let $|Q_{\mathfrak{A}(P)}| \leq 2^{\text{poly}(\alpha)}$ and $| \rightarrow_{\mathfrak{A}(P)} |$ be decidable in EXPTIME.

Then the entailment problem is in EXPTIME.

Theorem

Let Φ be a well-determined SID over a class C and P, Q be predicate names of the same rank. Moreover, let $\varphi(\mathbf{x})$, $\psi(\mathbf{x})$ be well-determined symbolic heaps over C.

Then $\varphi(\mathbf{x}) \models_{\Phi} \psi(\mathbf{x})$ is decidable if there is a heap automaton $\mathfrak{A}(P)$ accepting $L(P, \Phi)$ for each predicate name P occurring in Φ .

Theorem

For each automaton $\mathfrak{A}(P)$ from above, let $|Q_{\mathfrak{A}(P)}| \leq 2^{\text{poly}(\alpha)}$ and $| \rightarrow_{\mathfrak{A}(P)} |$ be decidable in EXPTIME.

Then the entailment problem is in EXPTIME.

Even for simple trees entailment becomes $\mathrm{Exp}\mathrm{TIME}\text{-hard}.$