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Robustness of Symbolic Heap Separation Logic

Symbolic heaps emerged as an idiomatic SL fragment
employed by various automated verification tools.

These tools rely on systems of inductive predicate definitions
(SID) as data structure specifications.

Ongoing trend: Allow user-supplied SIDs instead of
handcrafted ones.

We consider two problems: Given an SID. . .

1 prove that it is robust. — garbage-free, acyclic, satisfiable,. . .

2 synthesize a robust SID from it.
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Shape Analysis + Temporal Properties

Classical shape analysis properties: memory safety, . . .

Temporal properties:

Every element is always reachable by either x or y

Every element is eventually processed by procedure Q

Whenever the heap contains garbage, it eventually does not

All elements belong to a tree until inserted into a list

If an element is stored in x it will forever be the root of a tree

In every state the heap is either a tree or a doubly-linked list

The successors of every original input element are restored
upon termination
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Shape Analysis + Model-Checking

How do we prove temporal properties about symbolic heaps?

Generate labeled transition system using shape analysis

Every state corresponds to an SL formula ϕ

Apply standard model-checking to transition system

Problem: Prove ϕ |= Prop for a few million formulas ϕ

1 Synthesize robust SID w.r.t. Prop

2 Run shape analysis space with new SID

3 Efficiently decide ϕ |= Prop without looking into predicates
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Overview of our Results

We formally capture robustness properties by heap automata

We develop an algorithmic framework: For every heap
automaton we obtain. . .

a decision procedure for SID robustness

a synthesis procedure and a complexity bound

Considered robustness properties include acyclicity,
garbage-freedom, establishment, reachability, satisfiability. . .

Implementation and experiments

Standalone tool for SL

Part of model-checking within Attestor
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Symbolic Heaps with Inductive Predicates

Terms: t ::= x | null

Pure formulas: π ::= t = t | t 6= t (Π : set of pure formulas)

Spatial formulas: Σ ::= emp |

x 7→ t

|

Σ ∗ Σ

(t : tuple of terms)

Predicate calls: Γ ::= emp | P (t) | Γ ∗ Γ (P : predicate symbol)

Symbolic heaps (SH): ϕ(x) ::= ∃z .Σ ∗ Γ : Π (x, z : tuples of variables)

ϕ(x) is reduced if Γ = emp

emp is the empty heap

x 7→ t is a pointer to a single record

∗ is the separating conjunction of two domain-disjoint heaps.
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Systems of Inductive Definitions (SIDs)

An SID Φ is a finite set of rules of the form

∃z .Σ ∗ Γ : Π ⇒ P (x)

Example (Binary trees)

emp : {x = null} ⇒ tree(x)

∃y, z . x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

Semantics of predicate calls is given by unfolding to reduced SHs
collected in unfoldΦ(P (x)).
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Robustness Properties

Robustness properties are sets of reduced symbolic heaps (RSH).

Example

Established: no dangling pointers

Sat: all satisfiable RSHs

GarbageFree: Every location is reachable from a free variable
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Robustness Properties: Subtleties

Is y reachable from x in P (x, y)?

P (x, y)
unfold
===⇒ ∃(z1, z2) . Σ︸︷︷︸

x7→z1

∗ P1(z1, z2)︸ ︷︷ ︸
z1=z2

∗ P2(z2, y)︸ ︷︷ ︸
z2 7→y

: Π

Reachability might depend on unfoldings of all predicates

How do we know that some other predicate does not
invalidate reachability, e.g. z1 6= z2?

How do we prove reachability for

all unfoldings

of arbitrary symbolic heaps

in arbitrary SIDs?
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invalidate reachability, e.g. z1 6= z2?

How do we prove reachability for

all unfoldings

of arbitrary symbolic heaps
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Heap Automata: Compositionality

We reason compositionally while unfolding a symbolic heap

ϕ(x) = ∃z . Σ ∗

property q1︷ ︸︸ ︷

P1(x1) ∗ . . . ∗

property qm︷ ︸︸ ︷

Pm(xm) : Π

︸ ︷︷ ︸
property q

Soundness: If Pk has an unfolding with property qk (1 ≤ k ≤ m)
and for those unfoldings ϕ(x) has property q then ϕ(x) has an
unfolding with property q.

Completeness: If ϕ(x) has an unfolding with property q then
there are unfoldings of Pk with some property qk and for those
unfoldings ϕ(x) has property q.
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Heap Automata: Definition

Definition

A heap automaton is a tuple A = (Q,→, F ), where

Q is a finite set of states,

F ⊆ Q is a set of final states, and

→⊆ Q∗ × SH×Q is a transition relation such that

→ is compositional (prev. slide), and

→ is decidable.

The language L(A) of heap automaton A is the set of all reduced
symbolic heaps with a transition to a final state.
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Heap Automata: Results
Given SID Φ,

heap automaton A, and symbolic heap ϕ(x). . .

Theorem (Refinement Theorem)

One can effectively construct an SID Ψ such that
∀P : unfoldΨ(P (x)) = unfoldΦ(P (x)) ∩ L(A).

Theorem

1 size(Ψ) ≤ size(Φ) · size(A)#pred. calls

2 It is decidable in linear time whether unfoldΦ(ϕ(x)) is empty.

3 Languages of heap automata are effectively closed under
union, intersection and complement.

4 It is decidable whether unfoldΦ(ϕ(x)) ∩ L(A) 6= ∅.

5 It is decidable whether unfoldΦ(ϕ(x)) ⊆ L(A).
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A Zoo of Robustness Properties

We constructed heap automata for the following properties:

Property

Complexity FV bounded

satisfiability ExpTime-C1 NP-C1

model-checking ExpTime-C1 NP-C1

garbage-freedom ExpTime-C coNP-C
acyclicity ExpTime-C coNP-C
reachability ExpTime-C coNP-C
establishment ExpTime-C coNP-C

1 (Brotherston et al., 2014) and (Brotherston et al., 2016)

All of these problems are PTime–complete for an additionally
bounded number of predicate calls.
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Implementation: Harrsh1

Implemented framework and heap automata in Scala

No other tool supports checking robustness properties

Notable exception: Cyclist can check satisfiability

Benchmarks are taken from Cyclist

8 common SIDs from the literature: 0.3s to check all
robustness properties.

45945 SIDs generated by Caber from C source code

Satisfiability: Harrsh: 12.5s Cyclist: 44.9s

Other robustness properties: ranging from 7.2s to 18.5s

Satisfiability on worst-case instance
Harrsh: 169s Cyclist: 164s

1Heap Automata for Reasoning about Robustness of Symbolic Heaps
14
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Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



Application to Model-Checking

Implemented framework and heap automata in Attestor

Supported heap automata in LTL formulas:

Reachability

Acyclicity

Garbage-Freedom

Reachability

Shape: The heap is a tree, sll, dll. . .

Completeness: Every element of the initial heap has been
accessed (by a given variable)

Preservation: The successors of each element are as in the
initial heap

15



A few Experiments

2.9GHz Intel Core i5 Laptop, JVM limited to 2GB of RAM

State space generation (SSG): null pointer dereferences,
memory leaks

Program Property SSG (s) Model-Checking (s)

SLL.reversal reachability 0.12 0.02
SLL.reversal completeness 0.13 0.02

DLL.traversal completeness 0.24 0.10
DLL.traversal preservation 0.33 0.32
DLL.reversal shape 0.14 0.05
DLL.reversal reachability 0.18 0.02
DLL.reversal completeness 0.24 0.15

BT.lindstrom term. at root 0.19 0.03
BT.lindstrom shape 0.20 0.17
BT.lindstrom completeness 0.62 0.46
BT.lindstrom preservation 0.38 0.70
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What else?

Heap automata. . .

. . . can generate counterexamples for robustness properties

. . . can be applied to discharge certain entailments

restricted to SHs ϕ, ψ and SID Φ without dangling pointers

given heap automata for all predicates in Φ, it is decidable
whether ϕ |=Φ ψ.

enables systematic approach to construct entailment checkers

entailments are decidable in ExpTime if heap automata are at
most exponentially large.
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Summary

Algorithmic framework for deciding and synthesizing
robustness properties based on heap automata

Complexity analysis for common robustness properties

Robustness checker:
https://bitbucket.org/jkatelaan/harrsh

Shape analysis + model-checking:
https://moves-rwth.github.io/attestor

Future Work

More robustness properties

More experiments

Characterization of data structures that can be specified by
heap automata

Synthesize heap automata from backward-confluent SIDs?

18
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Heap Automata: Formal Definition of Compositionality

ϕ[P/τ ] unfolds P by τ

Definition

A heap automaton A = (Q,SHC ,→, F ) is compositional if

for
every p ∈ Q and every ϕ ∈ SHC with predicate calls P1, . . . , Pm
and all reduced symbolic heaps τ1, . . . , τm ∈ RSHC :

∃q ∈ Qm . q
ϕ−→ p and

∧
1≤i≤m

ε
τi−→ q[i]

if and only if

ε
ϕ[P1/τ1,...,Pm/τm]−−−−−−−−−−−−→ p

L(A) , {τ ∈ RSHC | ∃p ∈ F . ε
τ−→ p}
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The Entailment Problem

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps ϕ,ψ, decide whether

ϕ |=Φ ψ ⇔ ∀s, h . s, h |=Φ ϕ implies s, h |=Φ ψ

Crucial for automated program verification based on
separation logic

Antonopolous et al.: The entailment problem is undecidable

Most tools use highly-sepcialized techniques for fixed SIDs

Our approach: Use heap automata as framework instead

21



The Entailment Problem

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps ϕ,ψ, decide whether

ϕ |=Φ ψ ⇔ ∀s, h . s, h |=Φ ϕ implies s, h |=Φ ψ

Crucial for automated program verification based on
separation logic

Antonopolous et al.: The entailment problem is undecidable

Most tools use highly-sepcialized techniques for fixed SIDs

Our approach: Use heap automata as framework instead

21



The Entailment Problem

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps ϕ,ψ, decide whether

ϕ |=Φ ψ ⇔ ∀s, h . s, h |=Φ ϕ implies s, h |=Φ ψ

Crucial for automated program verification based on
separation logic

Antonopolous et al.: The entailment problem is undecidable

Most tools use highly-sepcialized techniques for fixed SIDs

Our approach: Use heap automata as framework instead

21



The Entailment Problem

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps ϕ,ψ, decide whether

ϕ |=Φ ψ ⇔ ∀s, h . s, h |=Φ ϕ implies s, h |=Φ ψ

Crucial for automated program verification based on
separation logic

Antonopolous et al.: The entailment problem is undecidable

Most tools use highly-sepcialized techniques for fixed SIDs

Our approach: Use heap automata as framework instead

21



The Entailment Problem

Definition (Entailment Problem)

Given an SID Φ and symbolic heaps ϕ,ψ, decide whether

ϕ |=Φ ψ ⇔ ∀s, h . s, h |=Φ ϕ implies s, h |=Φ ψ

Crucial for automated program verification based on
separation logic

Antonopolous et al.: The entailment problem is undecidable

Most tools use highly-sepcialized techniques for fixed SIDs

Our approach: Use heap automata as framework instead

21



Well-determined Symbolic Heaps

Definition

A reduced symbolic heap is well-determined if it is satisfiable
and all of its models are isomorphic.

A symbolic heap is well-determined if its unfoldings are.

An SID is well-determined if all symbolic heaps in its rules are.

Example

τ(x) , ∃z.x 7→ z : {x 6= z} not well-determined

ϕ(x) , ∃z.x 7→ z ∗ z 7→ null well-determined

22
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Entailment between Predicates

Theorem

Let Φ be a well-determined SID over a class C and P,Q be
predicate names of the same rank.

Then P (x) |=Φ Q(x) is decidable if there is a heap automaton
accepting

L(P,Φ) , {σ ∈ RSHC | ∃τ ∈ unfoldΦ(Q) . σ |= τ}.

Example

(cyclic, doubly-linked) lists, skip-lists, trees, . . .
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Entailment between Symbolic Heaps

Theorem

Let Φ be a well-determined SID over a class C and P,Q be
predicate names of the same rank.

Moreover, let ϕ(x), ψ(x) be
well-determined symbolic heaps over C.

Then ϕ(x) |=Φ ψ(x) is decidable if there is a heap automaton
A(P ) accepting L(P,Φ) for each predicate name P occurring in Φ.

Theorem

For each automaton A(P ) from above, let |QA(P )| ≤ 2poly(α) and
| →A(P ) | be decidable in ExpTime.

Then the entailment problem is in ExpTime.

Even for simple trees entailment becomes ExpTime–hard.
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