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Motivation

Typical programming errors

• Dereferencing null (or disposed) pointers
• Accidental invalidation of data structures
• Creation of memory leaks

=⇒ need to reason automatically about shared mutable data structures

Why separation logic?
• extension of Hoare-logic to reason about

heaps
• Hoare-style proofs, shape analysis, symbolic

execution…
• Cyclist, Infer, VeriFast…
• suffers from undecidable entailment problem

Why graph grammars?
• extension of context-free grammars to

describe graphs
• shape analysis, symbolic execution, natural

language processing…
• Juggrnaut, Groove…
• suffers from undecidable inclusion problem
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Motivation: Separation Logic Entailments

{ls(h, null)}

void addTwo(Node h) {

{ls(h, null)}

Node u = new Node();

{ls(h, null) ∗ u 7→ _}

u.next = h;

{∃x . ls(x, null) ∗ u 7→ x ∧ h = x}

h = u;

{∃x, y . ls(x, null) ∗ y 7→ x ∧ h = y ∧ y = u}

u = new Node();

{∃x, y . ls(x, null) ∗ y 7→ x ∗ u 7→ _ ∧ h = y}

u.next = h;

{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = z}

h = u;

{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = u}
{ls(h, null)}

}

{ls(h, null)}

“Effective procedures for establishing
entailments are at the foundation of

automatic verification based on separation
logic.”1

1J. Brotherston et al. ”Automated cyclic entailment proofs in separation logic.” CADE, 2011.
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Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
▷ void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷

h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion
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Overview

How are these problems related?

What are decidable fragments?

• undecidable entailment problem
• decidable entailment problem
• new fragments

SLRD HRG MSO

TLGDSGSL

TL-DSGSLTL

∆− DSG∆− SLTL

SLbtw

=

⊂ ⊂ ⊂

⊂

⊂

⊂ ⊂

=

=

⊂ ⊂

⊂⊂
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Heaps

h : N 99Kfinite N0

null

n n n

np

p p p

1 2 4 5 6 7 8 9

40 61 84 06

locations

values

object

np np np np selectors

4.n 7→ 6 ∗ 8.p 7→ 6
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Separation logic with recursive definitions

Separation logic formulae φ(⃗x)
φ(⃗x) ::= ∃⃗y . σ(⃗x, y⃗) ∧ π(⃗x, y⃗) symbolic heaps

σ(⃗z) ::= zi.s 7→ zj | P(⃗z) | σ ∗ σ spatial formulae

π(⃗z) ::= zi = zj | π ∧ π pure formulae

Predicate definitions P(⃗x) = φ1(⃗x) ∨ . . . ∨ φk(⃗x)
Example

ls(x1, x2) = (emp ∧ x1 = x2) ∨ (∃y . x1.n 7→ y ∗ ls(y, x2))

Environments Γ = {P(⃗x) | P ∈ Pred}
• set of predicate definitions
• every existentially quantified variable is eventually allocated
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Graph grammars in a nutshell

Σ finite alphabet
rk : Σ → N ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
• set of nodes V, set of hyperedges E,
• labelling lab : E → Σ, rk(e) = lab(e),
• attachment att : E → V⋆ rk(e) = |att(e)|,
• external nodes ext ∈ V⋆.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
• rk(e) = 2 for each e ∈ E,
• at most one outgoing edge is labelled s ∈ Σ for each v ∈ V.

p

p p

x

1

2

1 1

32 2

1 2
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Graph grammars in a nutshell

A hyperedge replacement grammar (HRG) is a tuple G = (N,Σ,P, S) with
• disjoint sets of nonterminals N and terminals Σ,
• set of production rules P ⊆ N × HG of the form X → H rk(X) = |extH|,
• initial symbol S ∈ N.

Derivations, derivation trees, languages are defined as for context-free grammars.

A data structure grammar (DSG) is an HRG generating heap configurations only.

Theorem
For each HRG G one can construct a DSG K such that L(K) = L(G) ∩ HC.
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Data structure grammar for trees with linked leaves

S → S1 ≜

S → S2 ≜

data structure grammar derivation tree derivation

1
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S S

3 4
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3 4
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3 4
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n n
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Separation logic and hyperedge replacement grammars

Theorem (Jansen et al.1)
Every separation logic formula can be translated into a language-equivalent data
structure grammar and vice versa.

S →

1

2

1 2

S S

33 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 1

4

p

l r
n n

p p

S(x1, x2, x3, x4) =

∃y1, y2, y3 . x1 7→ (y1, y2, x2, null)
∗ S(y1, x1, x3, y3)
∗ S(y2, x1, y3, x4)

∨

∃y1 . x1 7→ (x3, y1, x2, null)
∗ x3 7→ (null, null, x1, y1)
∗ y1 7→ (null, null, x1, x4)

1C. Jansen et al. ”Generating inductive predicates for symbolic execution of pointer-manipulating programs.” ICGT, 2014.
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Towards a decidable inclusion problem

Theorem (Courcelle2)
For each HRG G and MSO sentence φ, one can effectively construct an HRG K such
that

L(K) = L(G) ∩ L(φ) = {H ∈ L(G) | H |= φ}.

Let G,K be data structure grammars.
Assume there exists MSO sentence φ with L(K) = L(φ).

L(G) ⊆ L(K)

⇔ L(G) ⊆ L(φ)

⇔ L(G) ∩ L(¬φ) = ∅

G is an arbitrary data structure grammar!

2Courcelle, B. ”The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.” Information and computation, 1990.
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Towards MSO definable graph grammars

Courcelle1: MSO definable graph
languages allow reconstruction of
derivation trees

Derivation tree
• Nodes: all anchor nodes ext(1)
• Children: att(e)(1) if lab(e) ∈ N

MSO construction
1. Create witness for derivation of H by G

i. Extract derivation tree t from H
ii. Assign each edge to a node in t

2. H ∈ L(G) iff witness specifies valid
derivation of H by G

S →

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3

4

p

l r
n n

p p

1Courcelle, B. ”The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
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Tree-like hypergraphs

Definition
Hypergraph H = (V, E, att, lab, ext) is a tree-like hypergraph iff for each e ∈ E
1. lab(e) ∈ Σ implies ext(1) ∈ [att(e)],
2. lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)].

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

anchor node ext(1)

att(e)(1)

First approach: Every production rule maps to a tree-like hypergraph
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Why tree-like hypergraphs?

L = { an bn | n ≥ 1 } is not MSO definable.

S → 1 S 2
a 1 2 b

1 2
a b

1. false lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. true lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

S1 → 1 S1 S2 2
a 1 2 1 2

S1 → 1 S2 2
a 1 2 S2 → 1 2

b

1. true lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. false lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

For context-free grammars our conditions yield right-linear grammars.
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Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation
S2

S2

1

2

1

2

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged
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Tree-like grammars

Let M(G) ≜ {H ∈ L(G) | two or more anchors are merged in a derivation of H }.

Definition
A tree-like grammar is an HRG G = (N,Σ,P, S) where
1. H is a tree-like hypergraph for each (X,H) ∈ P,
2. M(G) = ∅.

Theorem
Let G be an HRG where each production rule maps to tree-like hypergraphs. Then
one can construct a tree-like grammar K with L(K) = L(G) \ M(G).
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Tree-like grammars

Theorem
For each tree-like grammar G there exists an MSO sentence φG such that for each
hypergraph H

H ∈ L(G) if and only if H |= φG.

Corollary
The class of languages generated by tree-like grammars is closed under union,
intersection and difference.

Corollary
The inclusion problem for tree-like grammars is decidable.

What about separation logic?
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Tree-like separation logic

Let PT(φ) ≜ {{x, y} | ∃s ∈ Σ . x.s 7→ y occurs in φ}.
Definition
Let φ(⃗x) be a separation logic formula. φ(⃗x) is tree-like iff
1. x1 ∈ A for each A ∈ PT(φ),
2. there exists A ∈ PT(φ) with y1 ∈ A for each predicate P(⃗y) in φ(⃗x).

S(x1, x2, x3, x4) =

∃y1, y2, y3 . x1.l 7→ y1
∗ x1.r 7→ y2
∗ x1.p 7→ x2
∗ x1.n 7→ null
∗ S(y1, x1, x3, y3)
∗ S(y2, x1, y3, x4)

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

anchor node ext(1)

att(e)(1)
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Tree-like separation logic

For P(⃗x) = φ1(⃗x) ∨ . . . ∨ φn(⃗x) ∈ Γ, let Γ(P) = {φ1(⃗x), . . . , φn(⃗x)}.
Definition
Environment Γ is tree-like iff for each P,Q ∈ Pred
1. φ(⃗x) is tree-like for each φ(⃗x) ∈ Γ(P).
2. x1 ̸= y1 holds for each φ(⃗x) ∈ Γ(P), ψ(⃗y) ∈ Γ(Q).

Theorem
Every tree-like separation logic formula can be translated into a language-equivalent
tree-like data structure grammar and vice versa.

Corollary
The entailment problem for tree-like separation logic is decidable.

weak alternative to 2:
There exists ∅ ̸= ∆ ⊆ Σ such that for each φ(⃗x) ∈ Γ(P)

∆ ⊆ {s ∈ Σ | x1.s 7→ y occurs in φ(⃗x) for some y}.
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Spaghetti stacks

1

2S →

S S

p h p

1 12 2

1

2

h

S(x1, x2) =

∃y1, y2 . x1.h 7→ x2
∗ y1.p 7→ x1 ∗ y2.p 7→ x2
∗ S(y1, x2)
∗ S(y2, x2)

∨
x1.h 7→ x2

Theorem
Tree-like separation logic is strictly more expressive than separation logic with
bounded tree width 3.

3Iosif, R. et al. ”The tree width of separation logic with recursive definitions.” CADE, 2013.
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Conclusion

Wrap-up
• Close relationship between separation logic

and data structure grammars
• (Extended) inclusion problem decidable for

tree-like grammars
• (Extended) entailment problem decidable for

tree-like separation logic
• Tree-like SL is more expressive than SLbtw

Future Work
• Complexity analysis?
• Tractable fragments of tree-like grammars?

SLRD HRG MSO

TLGDSGSL

TL-DSGSLTL

∆− DSG∆− SLTL

SLbtw

=

⊂ ⊂ ⊂

⊂

⊂

⊂ ⊂

=

=

⊂ ⊂

⊂⊂
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