Tree-like Grammars and Separation Logic

Christina Jansen Christoph Matheja Thomas Noll

Software Modeling and Verification Group

http://moves.rwth-aachen.de/

APLAS 2015

December 30, 2015; Pohang

Motivation

Typical programming errors

- Dereferencing null (or disposed) pointers
- Accidental invalidation of data structures
- Creation of memory leaks

⇒ need to reason automatically about shared mutable data structures

Motivation

Typical programming errors

- Dereferencing null (or disposed) pointers
- Accidental invalidation of data structures
- Creation of memory leaks

⇒ need to reason automatically about shared mutable data structures

Why separation logic?

- extension of Hoare-logic to reason about heaps
- Hoare-style proofs, shape analysis, symbolic execution...
- Cyclist, Infer, Verifast...
- suffers from undecidable entailment problem

Motivation

Typical programming errors

- Dereferencing null (or disposed) pointers
- Accidental invalidation of data structures
- Creation of memory leaks

⇒ need to reason automatically about shared mutable data structures

Why separation logic?

- extension of Hoare-logic to reason about heaps
- Hoare-style proofs, shape analysis, symbolic execution...
- Cyclist, Infer, Verifast...
- suffers from undecidable entailment problem

Why graph grammars?

- extension of context-free grammars to describe graphs
- shape analysis, symbolic execution, natural language processing...
- Juggrnaut, Groove...
- suffers from undecidable inclusion problem

Motivation: Separation Logic Entailments

```
void addTwo(Node h) {
   Node u = new Node();
   u.next = h;
   h = u;
   u = new Node();
   u.next = h;
   h = u;
}
```

 $^{^{1}}$ J. Brotherston et al. "Automated cyclic entailment proofs in separation logic." CADE, 2011.

Motivation: Separation Logic Entailments

```
\{\mathit{ls}(\mathit{h},\mathtt{null})\}
void addTwo(Node h) {
   Node u = new Node();
   u.next = h;
   h = u;
   u = new Node();
   u.next = h;
   h = u;
 \\ \big\{ \textit{ls}(\textit{h}, \mathtt{null}) \big\}
```

 $^{^{1}}$ J. Brotherston et al. "Automated cyclic entailment proofs in separation logic." CADE, 2011.

Motivation: Separation Logic Entailments

```
\{ ls(h, null) \}
void addTwo(Node h) {
   { ls(h, null) }
   Node u = new Node();
   \{ Is(h, null) * u \mapsto \_ \}
   u.next = h;
   \{\exists x : ls(x, null) * u \mapsto x \land h = x\}
  h = u:
   \{\exists x, y : ls(x, null) * y \mapsto x \land h = y \land y = u\}
  u = new Node():
   \{\exists x, y : ls(x, null) * y \mapsto x * u \mapsto \land h = y\}
   u.next = h:
   \{\exists x, y, z : ls(x, null) * y \mapsto x * u \mapsto z \land h = z\}
  h = u:
   \{\exists x, y, z : \mathit{ls}(x, \mathtt{null}) * y \mapsto x * u \mapsto z \land h = u\}
   { ls(h, null) }
\{ ls(h, null) \}
```

"Effective procedures for establishing entailments are at the foundation of automatic verification based on separation logic." 1

¹J. Brotherston et al. "Automated cyclic entailment proofs in separation logic." CADE, 2011.

```
{ | |s(h, null) |}

> void addTwo(Node h) {

Node u = new Node();

u.next = h;

h = u;

u = new Node();

u.next = h;

h = u;

} { | |s(h, null) |}

L → 1 → 2 | 1 → 1 / 2 / 2
```



```
{ \( \begin{aligned} \ls(h, \text{null} \right) \right\} \\ \text{void addTwo(Node h) } \{ \text{Node u = new Node();} \\ \text{$\text{u.next = h;} \\ \text{$\text{h = u;} \\ \text{$\text{u.next = h;} \\ \text{$\text{h = u;} \\ \text{$\text{$\text{$\text{$k(h, \text{null})}} \right\}} \\ \end{aligned} \text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$$\text{$\text{$\text{$\text{$\text{$\text{$$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$$\text{$\text{$\text{$\text{$$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\e
```



```
{ \( \lambda \), \( \text{null} \) \) \( \text{void addTwo(Node h)} \) \( \text{Node u = new Node();} \) \( \text{u.next = h;} \) \( \text{h = u;} \) \( \text{u = new Node();} \) \( \text{u.next = h;} \) \( \text{h = u;} \) \( \text{h = u;} \) \( \text{ls(h, null)} \) \( \text{L} \rightarrow \) \( \text{1 \rightarrow 2} \) \( \text{2 \rightarrow 2} \)
```



```
\{\mathit{ls}(\mathit{h},\mathtt{null})\}
    void addTwo(Node h) {
                                                                                                                    null
       Node u = new Node();
       u.next = h;
      h = u;
\triangleright
       u = new Node();
       u.next = h;
       h = u;
                                                                                                                     null
    \{\mathit{ls}(\mathit{h}, \mathtt{null})\}
                                                null
                                                                                                                    null
                                                                                                                    null
```

```
\{\mathit{ls}(\mathit{h},\mathtt{null})\}
    void addTwo(Node h) {
                                                                                                                    null
       Node u = new Node();
       u.next = h;
      h = u;
\triangleright
       u = new Node();
       u.next = h;
       h = u;
                                                                                                                    null
    \{\mathit{ls}(\mathit{h},\mathtt{null})\}
                                                null
                                                                                                                    null
                                                                                                                    null
```


Overview

How are these problems related?

What are decidable fragments?

- undecidable entailment problem
- decidable entailment problem
- new fragments

$$h: \mathbb{N} \longrightarrow_{\mathsf{finite}} \mathbb{N}_0$$

locations

1 2 4 5 6 7 8 9

0 4 1 6 4 8 6 **0** values

$$h: \mathbb{N} \longrightarrow_{\mathsf{finite}} \mathbb{N}_0$$

object

1	2	4	5	6	7	8	9	locations
0	4	1	6	4	8	6	0	values
p	n	p	n	p	n	p	n	selectors

$$h: \mathbb{N} \longrightarrow_{\mathsf{finite}} \mathbb{N}_0$$

object

Separation logic with recursive definitions

Separation logic formulae $\varphi(\vec{x})$

$$\varphi(\vec{\mathbf{x}}) ::= \exists \vec{\mathbf{y}} . \sigma(\vec{\mathbf{x}}, \vec{\mathbf{y}}) \land \pi(\vec{\mathbf{x}}, \vec{\mathbf{y}})$$

symbolic heaps

$$\sigma(\vec{z}) ::= z_i.s \mapsto z_j \mid P(\vec{z}) \mid \sigma * \sigma$$

spatial formulae

$$\pi(\vec{z}) ::= z_i = z_j \mid \pi \wedge \pi$$

pure formulae

Separation logic with recursive definitions

Separation logic formulae $\varphi(\vec{x})$

$$\varphi(\vec{x}) ::= \exists \vec{y} . \sigma(\vec{x}, \vec{y}) \land \pi(\vec{x}, \vec{y})$$

symbolic heaps

$$\sigma(\vec{z}) ::= z_i.s \mapsto z_i \mid P(\vec{z}) \mid \sigma * \sigma$$

spatial formulae

$$\pi(\vec{z}) ::= z_i = z_j \mid \pi \wedge \pi$$

pure formulae

Predicate definitions $P(\vec{x}) = \varphi_1(\vec{x}) \vee \ldots \vee \varphi_k(\vec{x})$

Example

$$\mathit{ls}(x_1, x_2) = (\mathit{emp} \land x_1 = x_2) \lor (\exists y . x_1.n \mapsto y * \mathit{ls}(y, x_2))$$

Separation logic with recursive definitions

Separation logic formulae $\varphi(\vec{x})$

$$\varphi(\vec{x}) ::= \exists \vec{y} . \sigma(\vec{x}, \vec{y}) \land \pi(\vec{x}, \vec{y})$$

symbolic heaps

$$\sigma(\vec{z}) ::= z_i.s \mapsto z_i \mid P(\vec{z}) \mid \sigma * \sigma$$

spatial formulae

$$\pi(\vec{z}) ::= z_i = z_j \mid \pi \wedge \pi$$

pure formulae

Predicate definitions $P(\vec{x}) = \varphi_1(\vec{x}) \vee \ldots \vee \varphi_k(\vec{x})$

Example

$$\mathit{ls}(x_1, x_2) = (\mathit{emp} \land x_1 = x_2) \lor (\exists y . x_1.n \mapsto y * \mathit{ls}(y, x_2))$$

Environments $\Gamma = \{P(\vec{x}) \mid P \in Pred\}$

- set of predicate definitions
- every existentially quantified variable is eventually allocated

$$\begin{array}{ll} \Sigma & \qquad & \text{finite alphabet} \\ rk \ : \ \Sigma \to \mathbb{N} & \quad \text{ranking function} \end{array}$$

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with

- set of nodes V, set of hyperedges E,
- labelling lab : $E \to \Sigma$, rk(e) = lab(e),
- attachment att : $E \rightarrow V^*$ rk(e) = |att(e)|,
- external nodes $ext \in V^*$.

$$\begin{array}{ll} \Sigma & \qquad & \text{finite alphabet} \\ rk \ : \ \Sigma \to \mathbb{N} & \quad \text{ranking function} \end{array}$$

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with

- set of nodes V, set of hyperedges E,
- labelling lab : $E \to \Sigma$, rk(e) = lab(e),
- attachment att : $E \rightarrow V^*$ rk(e) = |att(e)|,
- external nodes $ext \in V^*$.

$$\Sigma$$
 finite alphabet $rk: \Sigma \to \mathbb{N}$ ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with

- set of nodes V, set of hyperedges E,
- labelling lab : $E \to \Sigma$, rk(e) = lab(e),
- attachment att : $E \rightarrow V^*$ rk(e) = |att(e)|,
- external nodes $ext \in V^*$.

Hyperedge replacement

 $\begin{array}{ll} \Sigma & \qquad & \text{finite alphabet} \\ rk \ : \ \Sigma \to \mathbb{N} & \quad \text{ranking function} \end{array}$

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with

- set of nodes V, set of hyperedges E,
- labelling lab : $E \to \Sigma$, rk(e) = lab(e),
- attachment att : $E \rightarrow V^*$ rk(e) = |att(e)|,
- external nodes $ext \in V^*$.

Hyperedge replacement

$$\begin{array}{ll} \Sigma & \qquad & \text{finite alphabet} \\ rk \ : \ \Sigma \to \mathbb{N} & \quad \text{ranking function} \end{array}$$

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with

- set of nodes V, set of hyperedges E,
- labelling lab : $E \to \Sigma$, rk(e) = lab(e),
- attachment att : $E \rightarrow V^*$ rk(e) = |att(e)|,
- external nodes $ext \in V^*$.

Hyperedge replacement

$$\begin{array}{ll} \Sigma & \qquad & \text{finite alphabet} \\ rk \ : \ \Sigma \to \mathbb{N} & \quad \text{ranking function} \end{array}$$

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with

- set of nodes V, set of hyperedges E,
- labelling lab : $E \to \Sigma$, rk(e) = lab(e),
- attachment att : $E \rightarrow V^*$ rk(e) = |att(e)|,
- external nodes $ext \in V^*$.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with

- rk(e) = 2 for each $e \in E$,
- at most one outgoing edge is labelled $s \in \Sigma$ for each $v \in V$.

A hyperedge replacement grammar (HRG) is a tuple $G = (N, \Sigma, P, S)$ with

- disjoint sets of nonterminals N and terminals Σ ,
- set of production rules $P \subseteq N \times HG$ of the form $X \to H$ $rk(X) = |ext_H|$,
- initial symbol $S \in N$.

Derivations, derivation trees, languages are defined as for context-free grammars.

A hyperedge replacement grammar (HRG) is a tuple $G = (N, \Sigma, P, S)$ with

- disjoint sets of nonterminals N and terminals Σ ,
- set of production rules $P \subseteq N \times HG$ of the form $X \to H$ $rk(X) = |ext_H|$,
- initial symbol $S \in N$.

Derivations, derivation trees, languages are defined as for context-free grammars.

A data structure grammar (DSG) is an HRG generating heap configurations only.

Theorem

For each HRG G one can construct a DSG K such that $L(K) = L(G) \cap HC$.

Data structure grammar for trees with linked leaves

data structure grammar

derivation tree

derivation

Data structure grammar for trees with linked leaves

derivation tree

derivation

$$S o S_2 riangleq$$

 S_1

Data structure grammar for trees with linked leaves

derivation tree

derivation

$$\mathcal{S}
ightarrow \mathcal{S}_2 riangleq$$

Data structure grammar for trees with linked leaves

derivation tree

derivation

$$S
ightarrow S_2 riangleq$$

Data structure grammar for trees with linked leaves

data structure grammar

derivation tree

derivation

Data structure grammar for trees with linked leaves

data structure grammar

derivation tree

derivation

Separation logic and hyperedge replacement grammars

Theorem (Jansen et al.¹)

Every separation logic formula can be translated into a language-equivalent data structure grammar and vice versa.

¹C. Jansen et al. "Generating inductive predicates for symbolic execution of pointer-manipulating programs." ICGT, 2014.

Towards a decidable inclusion problem

Theorem (Courcelle²)

For each HRG G and MSO sentence φ , one can effectively construct an HRG K such that

$$L(K) = L(G) \cap L(\varphi) = \{H \in L(G) \mid H \models \varphi\}.$$

 $^{^2}$ Courcelle, B. "The monadic second-order logic of graphs. I. Recognizable sets of finite graphs." Information and computation, 1990.

Towards a decidable inclusion problem

Theorem (Courcelle²)

For each HRG G and MSO sentence φ , one can effectively construct an HRG K such that

$$L(K) = L(G) \cap L(\varphi) = \{ H \in L(G) \mid H \models \varphi \}.$$

Let G, K be data structure grammars.

Assume there exists MSO sentence φ with $L(K) = L(\varphi)$.

$$L(G) \subseteq L(K)$$

$$\Leftrightarrow L(G) \subseteq L(\varphi)$$

$$\Leftrightarrow L(G) \cap L(\neg \varphi) = \emptyset$$

²Courcelle, B. "The monadic second-order logic of graphs. I. Recognizable sets of finite graphs." Information and computation, 1990.

Towards a decidable inclusion problem

Theorem (Courcelle²)

For each HRG G and MSO sentence φ , one can effectively construct an HRG K such that

$$L(K) = L(G) \cap L(\varphi) = \{H \in L(G) \mid H \models \varphi\}.$$

Let G, K be data structure grammars.

Assume there exists MSO sentence φ with $L(K) = L(\varphi)$.

$$L(G) \subseteq L(K)$$

$$\Leftrightarrow L(G) \subseteq L(\varphi)$$

$$\Leftrightarrow L(G) \cap L(\neg \varphi) = \emptyset$$

G is an arbitrary data structure grammar!

²Courcelle, B. "The monadic second-order logic of graphs. I. Recognizable sets of finite graphs." Information and computation, 1990.

Courcelle¹: *MSO* definable graph languages allow reconstruction of derivation trees

Derivation tree

• Nodes: all anchor nodes ext(1)

¹Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability." Theoretical Computer Science, 1991.

Courcelle¹: *MSO* definable graph languages allow reconstruction of derivation trees

Derivation tree

• Nodes: all anchor nodes ext(1)

¹Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability." Theoretical Computer Science, 1991.

Courcelle¹: *MSO* definable graph languages allow reconstruction of derivation trees

Derivation tree

• Nodes: all anchor nodes ext(1)

¹Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability." Theoretical Computer Science, 1991.

Courcelle¹: *MSO* definable graph languages allow reconstruction of derivation trees

Derivation tree

• Nodes: all anchor nodes ext(1)

¹Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability." Theoretical Computer Science, 1991.

Courcelle¹: *MSO* definable graph languages allow reconstruction of derivation trees

Derivation tree

• Nodes: all anchor nodes ext(1)

¹Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability." Theoretical Computer Science, 1991.

Courcelle¹: *MSO* definable graph languages allow reconstruction of derivation trees

Derivation tree

Nodes: all anchor nodes ext(1)

• Children: att(e)(1) if $lab(e) \in N$

MSO construction

- 1. Create witness for derivation of H by G
 - i. Extract derivation tree t from H
 - ii. Assign each edge to a node in t
- 2. $H \in L(G)$ iff witness specifies valid derivation of H by G

¹Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability." Theoretical Computer Science, 1991.

Tree-like hypergraphs

Definition

Hypergraph H = (V, E, att, lab, ext) is a tree-like hypergraph iff for each $e \in E$

- 1. $lab(e) \in \Sigma$ implies $ext(1) \in [att(e)]$,
- 2. $lab(e) \in N$ implies $\exists e'$. $lab(e') \in \Sigma$ and $att(e)(1) \in [att(e')]$.

First approach: Every production rule maps to a tree-like hypergraph

 $L = \{ a^n b^n \mid n \ge 1 \}$ is not MSO definable.

 $L = \{ a^n b^n \mid n \ge 1 \}$ is not MSO definable.

- 1. false $lab(e) \in \Sigma$ implies $ext(1) \in [att(e)]$
- 2. true $lab(e) \in N$ implies $\exists e'$. $lab(e') \in \Sigma$ and $att(e)(1) \in [att(e')]$

 $L = \{ a^n b^n \mid n \ge 1 \}$ is not MSO definable.

- 1. false $lab(e) \in \Sigma$ implies $ext(1) \in [att(e)]$
- 2. true $lab(e) \in N$ implies $\exists e'$. $lab(e') \in \Sigma$ and $att(e)(1) \in [att(e')]$

$$S_1 o 1 \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \longrightarrow$$

- 1. true $lab(e) \in \Sigma$ implies $ext(1) \in [att(e)]$
- 2. false $lab(e) \in N$ implies $\exists e'$. $lab(e') \in \Sigma$ and $att(e)(1) \in [att(e')]$

 $L = \{ a^n b^n \mid n \ge 1 \}$ is not MSO definable.

- 1. false $lab(e) \in \Sigma$ implies $ext(1) \in [att(e)]$
- 2. true $lab(e) \in N$ implies $\exists e'$. $lab(e') \in \Sigma$ and $att(e)(1) \in [att(e')]$

$$S_1 o 1 \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \longrightarrow$$

- 1. true $lab(e) \in \Sigma$ implies $ext(1) \in [att(e)]$
- 2. false $lab(e) \in N$ implies $\exists e' . lab(e') \in \Sigma$ and $att(e)(1) \in [att(e')]$

For context-free grammars our conditions yield right-linear grammars.

HRG

derivation tree

derivation

HRG

Each production rule maps to a tree-like hypergraph.

derivation tree

derivation

16 / 22

HRG

derivation tree

derivation

HRG

derivation tree

derivation

HRG

derivation tree

derivation

Each production rule maps to a tree-like hypergraph.

Language of "even stars" is not MSO definable.

Observation: Anchor nodes are merged

Tree-like grammars

Let $\mathcal{M}(G) \triangleq \{H \in L(G) \mid \text{ two or more anchors are merged in a derivation of } H \}$.

Definition

A tree-like grammar is an HRG $G = (N, \Sigma, P, S)$ where

- 1. H is a tree-like hypergraph for each $(X, H) \in P$,
- $2. \mathcal{M}(G) = \emptyset.$

Theorem

Let G be an HRG where each production rule maps to tree-like hypergraphs. Then one can construct a tree-like grammar K with $L(K) = L(G) \setminus \mathcal{M}(G)$.

Tree-like grammars

Theorem

For each tree-like grammar G there exists an MSO sentence φ_G such that for each hypergraph H

$$H \in L(G)$$
 if and only if $H \models \varphi_G$.

Corollary

The class of languages generated by tree-like grammars is closed under union, intersection and difference.

Corollary

The inclusion problem for tree-like grammars is decidable.

Tree-like grammars

Theorem

For each tree-like grammar G there exists an MSO sentence φ_G such that for each hypergraph H

$$H \in L(G)$$
 if and only if $H \models \varphi_G$.

Corollary

The class of languages generated by tree-like grammars is closed under union, intersection and difference.

Corollary

The inclusion problem for tree-like grammars is decidable.

What about separation logic?

Let $PT(\varphi) \triangleq \{\{x,y\} \mid \exists s \in \Sigma : x.s \mapsto y \text{ occurs in } \varphi\}.$

Definition

Let $\varphi(\vec{x})$ be a separation logic formula. $\varphi(\vec{x})$ is tree-like iff

- 1. $\mathbf{x}_1 \in A$ for each $A \in PT(\varphi)$,
- 2. there exists $A \in PT(\varphi)$ with $y_1 \in A$ for each predicate $P(\vec{y})$ in $\varphi(\vec{x})$.

$$S(x_{1}, x_{2}, x_{3}, x_{4}) = \exists y_{1}, y_{2}, y_{3} . x_{1}.I \mapsto y_{1} \\ * x_{1}.r \mapsto y_{2} \\ * x_{1}.p \mapsto x_{2} \\ * x_{1}.n \mapsto \mathbf{null} \\ * S(y_{1}, x_{1}, x_{3}, y_{3}) \\ * S(y_{2}, x_{1}, y_{3}, x_{4})$$

For
$$P(\vec{x}) = \varphi_1(\vec{x}) \vee \ldots \vee \varphi_n(\vec{x}) \in \Gamma$$
, let $\Gamma(P) = \{\varphi_1(\vec{x}), \ldots, \varphi_n(\vec{x})\}$.

Definition

Environment Γ is tree-like iff for each $P, Q \in Pred$

- 1. $\varphi(\vec{x})$ is tree-like for each $\varphi(\vec{x}) \in \Gamma(P)$.
- 2. $x_1 \neq y_1$ holds for each $\varphi(\vec{x}) \in \Gamma(P)$, $\psi(\vec{y}) \in \Gamma(Q)$.

For
$$P(\vec{x}) = \varphi_1(\vec{x}) \vee \ldots \vee \varphi_n(\vec{x}) \in \Gamma$$
, let $\Gamma(P) = \{\varphi_1(\vec{x}), \ldots, \varphi_n(\vec{x})\}$.

Definition

Environment Γ is tree-like iff for each $P, Q \in Pred$

- 1. $\varphi(\vec{x})$ is tree-like for each $\varphi(\vec{x}) \in \Gamma(P)$.
- 2. $x_1 \neq y_1$ holds for each $\varphi(\vec{x}) \in \Gamma(P)$, $\psi(\vec{y}) \in \Gamma(Q)$.

Theorem

Every tree-like separation logic formula can be translated into a language-equivalent tree-like data structure grammar and vice versa.

Corollary

The entailment problem for tree-like separation logic is decidable.

For
$$P(\vec{x}) = \varphi_1(\vec{x}) \vee \ldots \vee \varphi_n(\vec{x}) \in \Gamma$$
, let $\Gamma(P) = \{\varphi_1(\vec{x}), \ldots, \varphi_n(\vec{x})\}$.

Definition

Environment Γ is tree-like iff for each $P, Q \in Pred$

- 1. $\varphi(\vec{x})$ is tree-like for each $\varphi(\vec{x}) \in \Gamma(P)$.
- 2. $x_1 \neq y_1$ holds for each $\varphi(\vec{x}) \in \Gamma(P)$, $\psi(\vec{y}) \in \Gamma(Q)$.

Theorem

Every tree-like separation logic formula can be translated into a language-equivalent tree-like data structure grammar and vice versa.

Corollary

The entailment problem for tree-like separation logic is decidable.

weak alternative to 2:

There exists $\emptyset \neq \Delta \subseteq \Sigma$ such that for each $\varphi(\vec{x}) \in \Gamma(P)$

$$\Delta \subseteq \{s \in \Sigma \mid x_1.s \mapsto y \text{ occurs in } \varphi(\vec{x}) \text{ for some } y\}.$$

Spaghetti stacks

$$S(x_1, x_2) =$$

$$\exists y_1, y_2 . x_1.h \mapsto x_2$$

$$* y_1.p \mapsto x_1 * y_2.p \mapsto x_2$$

$$* S(y_1, x_2)$$

$$* S(y_2, x_2)$$

$$\lor$$

$$x_1.h \mapsto x_2$$

Theorem

Tree-like separation logic is strictly more expressive than separation logic with bounded tree width ³.

 $^{^{3}}$ losif, R. et al. "The tree width of separation logic with recursive definitions." CADE, 2013.

Conclusion

Wrap-up

- Close relationship between separation logic and data structure grammars
- (Extended) inclusion problem decidable for tree-like grammars
- (Extended) entailment problem decidable for tree-like separation logic
- Tree-like SL is more expressive than SL_{btw}

Future Work

- Complexity analysis?
- Tractable fragments of tree-like grammars?

