
Tree-like Grammars and Separation Logic
Christina Jansen Christoph Matheja Thomas Noll

Software Modeling and Verification Group

http://moves.rwth-aachen.de/

APLAS 2015

December 30, 2015; Pohang

http://moves.rwth-aachen.de/

Motivation

Typical programming errors

• Dereferencing null (or disposed) pointers
• Accidental invalidation of data structures
• Creation of memory leaks

=⇒ need to reason automatically about shared mutable data structures

Why separation logic?
• extension of Hoare-logic to reason about

heaps
• Hoare-style proofs, shape analysis, symbolic

execution…
• Cyclist, Infer, VeriFast…
• suffers from undecidable entailment problem

Why graph grammars?
• extension of context-free grammars to

describe graphs
• shape analysis, symbolic execution, natural

language processing…
• Juggrnaut, Groove…
• suffers from undecidable inclusion problem

2 / 22

Motivation

Typical programming errors

• Dereferencing null (or disposed) pointers
• Accidental invalidation of data structures
• Creation of memory leaks

=⇒ need to reason automatically about shared mutable data structures

Why separation logic?
• extension of Hoare-logic to reason about

heaps
• Hoare-style proofs, shape analysis, symbolic

execution…
• Cyclist, Infer, VeriFast…
• suffers from undecidable entailment problem

Why graph grammars?
• extension of context-free grammars to

describe graphs
• shape analysis, symbolic execution, natural

language processing…
• Juggrnaut, Groove…
• suffers from undecidable inclusion problem

2 / 22

Motivation

Typical programming errors

• Dereferencing null (or disposed) pointers
• Accidental invalidation of data structures
• Creation of memory leaks

=⇒ need to reason automatically about shared mutable data structures

Why separation logic?
• extension of Hoare-logic to reason about

heaps
• Hoare-style proofs, shape analysis, symbolic

execution…
• Cyclist, Infer, VeriFast…
• suffers from undecidable entailment problem

Why graph grammars?
• extension of context-free grammars to

describe graphs
• shape analysis, symbolic execution, natural

language processing…
• Juggrnaut, Groove…
• suffers from undecidable inclusion problem

2 / 22

Motivation: Separation Logic Entailments

{ls(h, null)}

void addTwo(Node h) {

{ls(h, null)}

Node u = new Node();

{ls(h, null) ∗ u 7→ _}

u.next = h;

{∃x . ls(x, null) ∗ u 7→ x ∧ h = x}

h = u;

{∃x, y . ls(x, null) ∗ y 7→ x ∧ h = y ∧ y = u}

u = new Node();

{∃x, y . ls(x, null) ∗ y 7→ x ∗ u 7→ _ ∧ h = y}

u.next = h;

{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = z}

h = u;

{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = u}
{ls(h, null)}

}

{ls(h, null)}

“Effective procedures for establishing
entailments are at the foundation of

automatic verification based on separation
logic.”1

1J. Brotherston et al. ”Automated cyclic entailment proofs in separation logic.” CADE, 2011.
3 / 22

Motivation: Separation Logic Entailments

{ls(h, null)}
void addTwo(Node h) {

{ls(h, null)}

Node u = new Node();

{ls(h, null) ∗ u 7→ _}

u.next = h;

{∃x . ls(x, null) ∗ u 7→ x ∧ h = x}

h = u;

{∃x, y . ls(x, null) ∗ y 7→ x ∧ h = y ∧ y = u}

u = new Node();

{∃x, y . ls(x, null) ∗ y 7→ x ∗ u 7→ _ ∧ h = y}

u.next = h;

{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = z}

h = u;

{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = u}
{ls(h, null)}

}
{ls(h, null)}

“Effective procedures for establishing
entailments are at the foundation of

automatic verification based on separation
logic.”1

1J. Brotherston et al. ”Automated cyclic entailment proofs in separation logic.” CADE, 2011.
3 / 22

Motivation: Separation Logic Entailments

{ls(h, null)}
void addTwo(Node h) {
{ls(h, null)}
Node u = new Node();
{ls(h, null) ∗ u 7→ _}
u.next = h;
{∃x . ls(x, null) ∗ u 7→ x ∧ h = x}
h = u;
{∃x, y . ls(x, null) ∗ y 7→ x ∧ h = y ∧ y = u}
u = new Node();
{∃x, y . ls(x, null) ∗ y 7→ x ∗ u 7→ _ ∧ h = y}
u.next = h;
{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = z}
h = u;
{∃x, y, z . ls(x, null) ∗ y 7→ x ∗ u 7→ z ∧ h = u}
{ls(h, null)}

}
{ls(h, null)}

“Effective procedures for establishing
entailments are at the foundation of

automatic verification based on separation
logic.”1

1J. Brotherston et al. ”Automated cyclic entailment proofs in separation logic.” CADE, 2011.
3 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
▷ void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷

h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

▷ Node u = new Node();
u.next = h;

▷

h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

Node u = new Node();
▷ u.next = h;

▷

h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷ h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷ h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷ h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷ h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷ h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Motivation: Graph Grammar Language Inclusion

{ls(h, null)}
void addTwo(Node h) {

Node u = new Node();
u.next = h;

▷ h = u;
u = new Node();
u.next = h;
h = u;

}
{ls(h, null)}

L → 1 2 | 1 L 2
1 2

L

h null

1 2

L

h nullu

1 2

L

h nullu

1 2

L

h nullu

1 2

L L

h nullu

1 2 1 2

L

hu null

1 2

language inclusion

4 / 22

Overview

How are these problems related?

What are decidable fragments?

• undecidable entailment problem
• decidable entailment problem
• new fragments

SLRD HRG MSO

TLGDSGSL

TL-DSGSLTL

∆− DSG∆− SLTL

SLbtw

=

⊂ ⊂ ⊂

⊂

⊂

⊂ ⊂

=

=

⊂ ⊂

⊂⊂

5 / 22

Heaps

h : N 99Kfinite N0

null

n n n

np

p p p

1 2 4 5 6 7 8 9

40 61 84 06

locations

values

object

np np np np selectors

4.n 7→ 6 ∗ 8.p 7→ 6

6 / 22

Heaps

h : N 99Kfinite N0

null

n n n

np

p p p

1 2 4 5 6 7 8 9

40 61 84 06

locations

values

object

np np np np selectors

4.n 7→ 6 ∗ 8.p 7→ 6

6 / 22

Heaps

h : N 99Kfinite N0

null

n n n

np

p p p

1 2 4 5 6 7 8 9

40 61 84 06

locations

values

object

np np np np selectors

4.n 7→ 6 ∗ 8.p 7→ 6

6 / 22

Heaps

h : N 99Kfinite N0

null

n n n

np

p p p

1 2 4 5 6 7 8 9

40 61 84 06

locations

values

object

np np np np selectors

4.n 7→ 6

∗ 8.p 7→ 6

6 / 22

Heaps

h : N 99Kfinite N0

null

n n n

np

p p p

1 2 4 5 6 7 8 9

40 61 84 06

locations

values

object

np np np np selectors

4.n 7→ 6 ∗ 8.p 7→ 6

6 / 22

Separation logic with recursive definitions

Separation logic formulae φ(⃗x)
φ(⃗x) ::= ∃⃗y . σ(⃗x, y⃗) ∧ π(⃗x, y⃗) symbolic heaps

σ(⃗z) ::= zi.s 7→ zj | P(⃗z) | σ ∗ σ spatial formulae

π(⃗z) ::= zi = zj | π ∧ π pure formulae

Predicate definitions P(⃗x) = φ1(⃗x) ∨ . . . ∨ φk(⃗x)
Example

ls(x1, x2) = (emp ∧ x1 = x2) ∨ (∃y . x1.n 7→ y ∗ ls(y, x2))

Environments Γ = {P(⃗x) | P ∈ Pred}
• set of predicate definitions
• every existentially quantified variable is eventually allocated

7 / 22

Separation logic with recursive definitions

Separation logic formulae φ(⃗x)
φ(⃗x) ::= ∃⃗y . σ(⃗x, y⃗) ∧ π(⃗x, y⃗) symbolic heaps

σ(⃗z) ::= zi.s 7→ zj | P(⃗z) | σ ∗ σ spatial formulae

π(⃗z) ::= zi = zj | π ∧ π pure formulae

Predicate definitions P(⃗x) = φ1(⃗x) ∨ . . . ∨ φk(⃗x)
Example

ls(x1, x2) = (emp ∧ x1 = x2) ∨ (∃y . x1.n 7→ y ∗ ls(y, x2))

Environments Γ = {P(⃗x) | P ∈ Pred}
• set of predicate definitions
• every existentially quantified variable is eventually allocated

7 / 22

Separation logic with recursive definitions

Separation logic formulae φ(⃗x)
φ(⃗x) ::= ∃⃗y . σ(⃗x, y⃗) ∧ π(⃗x, y⃗) symbolic heaps

σ(⃗z) ::= zi.s 7→ zj | P(⃗z) | σ ∗ σ spatial formulae

π(⃗z) ::= zi = zj | π ∧ π pure formulae

Predicate definitions P(⃗x) = φ1(⃗x) ∨ . . . ∨ φk(⃗x)
Example

ls(x1, x2) = (emp ∧ x1 = x2) ∨ (∃y . x1.n 7→ y ∗ ls(y, x2))

Environments Γ = {P(⃗x) | P ∈ Pred}
• set of predicate definitions
• every existentially quantified variable is eventually allocated

7 / 22

Graph grammars in a nutshell

Σ finite alphabet
rk : Σ → N ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
• set of nodes V, set of hyperedges E,
• labelling lab : E → Σ, rk(e) = lab(e),
• attachment att : E → V⋆ rk(e) = |att(e)|,
• external nodes ext ∈ V⋆.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
• rk(e) = 2 for each e ∈ E,
• at most one outgoing edge is labelled s ∈ Σ for each v ∈ V.

p

p p

x

1

2

1 1

32 2

1 2

8 / 22

Graph grammars in a nutshell

Σ finite alphabet
rk : Σ → N ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
• set of nodes V, set of hyperedges E,
• labelling lab : E → Σ, rk(e) = lab(e),
• attachment att : E → V⋆ rk(e) = |att(e)|,
• external nodes ext ∈ V⋆.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
• rk(e) = 2 for each e ∈ E,
• at most one outgoing edge is labelled s ∈ Σ for each v ∈ V.

x

p

p p3

1 2

8 / 22

Graph grammars in a nutshell

Σ finite alphabet
rk : Σ → N ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
• set of nodes V, set of hyperedges E,
• labelling lab : E → Σ, rk(e) = lab(e),
• attachment att : E → V⋆ rk(e) = |att(e)|,
• external nodes ext ∈ V⋆.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
• rk(e) = 2 for each e ∈ E,
• at most one outgoing edge is labelled s ∈ Σ for each v ∈ V.

x

p

p p3

1 2

31 2

n p n

8 / 22

Graph grammars in a nutshell

Σ finite alphabet
rk : Σ → N ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
• set of nodes V, set of hyperedges E,
• labelling lab : E → Σ, rk(e) = lab(e),
• attachment att : E → V⋆ rk(e) = |att(e)|,
• external nodes ext ∈ V⋆.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
• rk(e) = 2 for each e ∈ E,
• at most one outgoing edge is labelled s ∈ Σ for each v ∈ V.

x

p

p p3

1 2

31 2

n p n

8 / 22

Graph grammars in a nutshell

Σ finite alphabet
rk : Σ → N ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
• set of nodes V, set of hyperedges E,
• labelling lab : E → Σ, rk(e) = lab(e),
• attachment att : E → V⋆ rk(e) = |att(e)|,
• external nodes ext ∈ V⋆.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
• rk(e) = 2 for each e ∈ E,
• at most one outgoing edge is labelled s ∈ Σ for each v ∈ V.

p

p p

n

p

n

8 / 22

Graph grammars in a nutshell

Σ finite alphabet
rk : Σ → N ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
• set of nodes V, set of hyperedges E,
• labelling lab : E → Σ, rk(e) = lab(e),
• attachment att : E → V⋆ rk(e) = |att(e)|,
• external nodes ext ∈ V⋆.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
• rk(e) = 2 for each e ∈ E,
• at most one outgoing edge is labelled s ∈ Σ for each v ∈ V.

p

p p

n

p

n

8 / 22

Graph grammars in a nutshell

A hyperedge replacement grammar (HRG) is a tuple G = (N,Σ,P, S) with
• disjoint sets of nonterminals N and terminals Σ,
• set of production rules P ⊆ N × HG of the form X → H rk(X) = |extH|,
• initial symbol S ∈ N.

Derivations, derivation trees, languages are defined as for context-free grammars.

A data structure grammar (DSG) is an HRG generating heap configurations only.

Theorem
For each HRG G one can construct a DSG K such that L(K) = L(G) ∩ HC.

9 / 22

Graph grammars in a nutshell

A hyperedge replacement grammar (HRG) is a tuple G = (N,Σ,P, S) with
• disjoint sets of nonterminals N and terminals Σ,
• set of production rules P ⊆ N × HG of the form X → H rk(X) = |extH|,
• initial symbol S ∈ N.

Derivations, derivation trees, languages are defined as for context-free grammars.

A data structure grammar (DSG) is an HRG generating heap configurations only.

Theorem
For each HRG G one can construct a DSG K such that L(K) = L(G) ∩ HC.

9 / 22

Data structure grammar for trees with linked leaves

S → S1 ≜

S → S2 ≜

data structure grammar derivation tree derivation

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 4

p

l r
n n

p p

S1

S1

S2 S2

S2

S

1

23

4

S SS
1

2

3 4

1

2

3 4

S S

S
1

2

3 4

1

2

3

4

1

2

3 4

S S
1

2

3 4

1

2

3

4

S
1

2

3

4

10 / 22

Data structure grammar for trees with linked leaves

S → S1 ≜

S → S2 ≜

data structure grammar derivation tree derivation

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 4

p

l r
n n

p p

S1

S1

S2 S2

S2

S

1

23

4

S SS
1

2

3 4

1

2

3 4

S S

S
1

2

3 4

1

2

3

4

1

2

3 4

S S
1

2

3 4

1

2

3

4

S
1

2

3

4

10 / 22

Data structure grammar for trees with linked leaves

S → S1 ≜

S → S2 ≜

data structure grammar derivation tree derivation

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 4

p

l r
n n

p p

S1

S1

S2 S2

S2

S

1

23

4

S SS
1

2

3 4

1

2

3 4

S S

S
1

2

3 4

1

2

3

4

1

2

3 4

S S
1

2

3 4

1

2

3

4

S
1

2

3

4

10 / 22

Data structure grammar for trees with linked leaves

S → S1 ≜

S → S2 ≜

data structure grammar derivation tree derivation

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 4

p

l r
n n

p p

S1

S1

S2 S2

S2

S

1

23

4

S SS
1

2

3 4

1

2

3 4

S S

S
1

2

3 4

1

2

3

4

1

2

3 4

S S
1

2

3 4

1

2

3

4

S
1

2

3

4

10 / 22

Data structure grammar for trees with linked leaves

S → S1 ≜

S → S2 ≜

data structure grammar derivation tree derivation

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 4

p

l r
n n

p p

S1

S1

S2 S2

S2

S

1

23

4

S SS
1

2

3 4

1

2

3 4

S S

S
1

2

3 4

1

2

3

4

1

2

3 4

S S
1

2

3 4

1

2

3

4

S
1

2

3

4

10 / 22

Data structure grammar for trees with linked leaves

S → S1 ≜

S → S2 ≜

data structure grammar derivation tree derivation

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 4

p

l r
n n

p p

S1

S1

S2 S2

S2

S

1

23

4

S SS
1

2

3 4

1

2

3 4

S S

S
1

2

3 4

1

2

3

4

1

2

3 4

S S
1

2

3 4

1

2

3

4

S
1

2

3

4

10 / 22

Separation logic and hyperedge replacement grammars

Theorem (Jansen et al.1)
Every separation logic formula can be translated into a language-equivalent data
structure grammar and vice versa.

S →

1

2

1 2

S S

33 4

p

l r

1 1

3 4

2

3 4

2

1

2

3 1

4

p

l r
n n

p p

S(x1, x2, x3, x4) =

∃y1, y2, y3 . x1 7→ (y1, y2, x2, null)
∗ S(y1, x1, x3, y3)
∗ S(y2, x1, y3, x4)

∨

∃y1 . x1 7→ (x3, y1, x2, null)
∗ x3 7→ (null, null, x1, y1)
∗ y1 7→ (null, null, x1, x4)

1C. Jansen et al. ”Generating inductive predicates for symbolic execution of pointer-manipulating programs.” ICGT, 2014.
11 / 22

Towards a decidable inclusion problem

Theorem (Courcelle2)
For each HRG G and MSO sentence φ, one can effectively construct an HRG K such
that

L(K) = L(G) ∩ L(φ) = {H ∈ L(G) | H |= φ}.

Let G,K be data structure grammars.
Assume there exists MSO sentence φ with L(K) = L(φ).

L(G) ⊆ L(K)

⇔ L(G) ⊆ L(φ)

⇔ L(G) ∩ L(¬φ) = ∅

G is an arbitrary data structure grammar!

2Courcelle, B. ”The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.” Information and computation, 1990.
12 / 22

Towards a decidable inclusion problem

Theorem (Courcelle2)
For each HRG G and MSO sentence φ, one can effectively construct an HRG K such
that

L(K) = L(G) ∩ L(φ) = {H ∈ L(G) | H |= φ}.

Let G,K be data structure grammars.
Assume there exists MSO sentence φ with L(K) = L(φ).

L(G) ⊆ L(K)

⇔ L(G) ⊆ L(φ)

⇔ L(G) ∩ L(¬φ) = ∅

G is an arbitrary data structure grammar!

2Courcelle, B. ”The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.” Information and computation, 1990.
12 / 22

Towards a decidable inclusion problem

Theorem (Courcelle2)
For each HRG G and MSO sentence φ, one can effectively construct an HRG K such
that

L(K) = L(G) ∩ L(φ) = {H ∈ L(G) | H |= φ}.

Let G,K be data structure grammars.
Assume there exists MSO sentence φ with L(K) = L(φ).

L(G) ⊆ L(K)

⇔ L(G) ⊆ L(φ)

⇔ L(G) ∩ L(¬φ) = ∅

G is an arbitrary data structure grammar!
2Courcelle, B. ”The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.” Information and computation, 1990.

12 / 22

Towards MSO definable graph grammars

Courcelle1: MSO definable graph
languages allow reconstruction of
derivation trees

Derivation tree
• Nodes: all anchor nodes ext(1)
• Children: att(e)(1) if lab(e) ∈ N

MSO construction
1. Create witness for derivation of H by G

i. Extract derivation tree t from H
ii. Assign each edge to a node in t

2. H ∈ L(G) iff witness specifies valid
derivation of H by G

S →

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3

4

p

l r
n n

p p

1Courcelle, B. ”The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
13 / 22

Towards MSO definable graph grammars

Courcelle1: MSO definable graph
languages allow reconstruction of
derivation trees

Derivation tree
• Nodes: all anchor nodes ext(1)
• Children: att(e)(1) if lab(e) ∈ N

MSO construction
1. Create witness for derivation of H by G

i. Extract derivation tree t from H

ii. Assign each edge to a node in t

2. H ∈ L(G) iff witness specifies valid
derivation of H by G

S →

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3

4

p

l r
n n

p p

1Courcelle, B. ”The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
13 / 22

Towards MSO definable graph grammars

Courcelle1: MSO definable graph
languages allow reconstruction of
derivation trees

Derivation tree
• Nodes: all anchor nodes ext(1)
• Children: att(e)(1) if lab(e) ∈ N

MSO construction
1. Create witness for derivation of H by G

i. Extract derivation tree t from H
ii. Assign each edge to a node in t

2. H ∈ L(G) iff witness specifies valid
derivation of H by G

S →

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3

4

p

l r
n n

p p

1Courcelle, B. ”The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
13 / 22

Towards MSO definable graph grammars

Courcelle1: MSO definable graph
languages allow reconstruction of
derivation trees

Derivation tree
• Nodes: all anchor nodes ext(1)
• Children: att(e)(1) if lab(e) ∈ N

MSO construction
1. Create witness for derivation of H by G

i. Extract derivation tree t from H
ii. Assign each edge to a node in t

2. H ∈ L(G) iff witness specifies valid
derivation of H by G

S →

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3

4

p

l r
n n

p p

1Courcelle, B. ”The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
13 / 22

Towards MSO definable graph grammars

Courcelle1: MSO definable graph
languages allow reconstruction of
derivation trees

Derivation tree
• Nodes: all anchor nodes ext(1)
• Children: att(e)(1) if lab(e) ∈ N

MSO construction
1. Create witness for derivation of H by G

i. Extract derivation tree t from H
ii. Assign each edge to a node in t

2. H ∈ L(G) iff witness specifies valid
derivation of H by G

S →

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3

4

p

l r
n n

p p

1Courcelle, B. ”The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
13 / 22

Towards MSO definable graph grammars

Courcelle1: MSO definable graph
languages allow reconstruction of
derivation trees

Derivation tree
• Nodes: all anchor nodes ext(1)
• Children: att(e)(1) if lab(e) ∈ N

MSO construction
1. Create witness for derivation of H by G

i. Extract derivation tree t from H
ii. Assign each edge to a node in t

2. H ∈ L(G) iff witness specifies valid
derivation of H by G

S →

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

1

2

3

4

p

l r
n n

p p

1Courcelle, B. ”The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
13 / 22

Tree-like hypergraphs

Definition
Hypergraph H = (V, E, att, lab, ext) is a tree-like hypergraph iff for each e ∈ E
1. lab(e) ∈ Σ implies ext(1) ∈ [att(e)],
2. lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)].

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

anchor node ext(1)

att(e)(1)

First approach: Every production rule maps to a tree-like hypergraph

14 / 22

Why tree-like hypergraphs?

L = { an bn | n ≥ 1 } is not MSO definable.

S → 1 S 2
a 1 2 b

1 2
a b

1. false lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. true lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

S1 → 1 S1 S2 2
a 1 2 1 2

S1 → 1 S2 2
a 1 2 S2 → 1 2

b

1. true lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. false lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

For context-free grammars our conditions yield right-linear grammars.

15 / 22

Why tree-like hypergraphs?

L = { an bn | n ≥ 1 } is not MSO definable.

S → 1 S 2
a 1 2 b

1 2
a b

1. false lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. true lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

S1 → 1 S1 S2 2
a 1 2 1 2

S1 → 1 S2 2
a 1 2 S2 → 1 2

b

1. true lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. false lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

For context-free grammars our conditions yield right-linear grammars.

15 / 22

Why tree-like hypergraphs?

L = { an bn | n ≥ 1 } is not MSO definable.

S → 1 S 2
a 1 2 b

1 2
a b

1. false lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. true lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

S1 → 1 S1 S2 2
a 1 2 1 2

S1 → 1 S2 2
a 1 2 S2 → 1 2

b

1. true lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. false lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

For context-free grammars our conditions yield right-linear grammars.

15 / 22

Why tree-like hypergraphs?

L = { an bn | n ≥ 1 } is not MSO definable.

S → 1 S 2
a 1 2 b

1 2
a b

1. false lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. true lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

S1 → 1 S1 S2 2
a 1 2 1 2

S1 → 1 S2 2
a 1 2 S2 → 1 2

b

1. true lab(e) ∈ Σ implies ext(1) ∈ [att(e)]
2. false lab(e) ∈ N implies ∃e′ . lab(e′) ∈ Σ and att(e)(1) ∈ [att(e′)]

For context-free grammars our conditions yield right-linear grammars.

15 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation
S2

S2

1

2

1

2

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation

S1

S2

1

1

2

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation

S2

1

2

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation

S1

1

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation
S2

S2

1

2

1

2

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation

S1

S2

1

2

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation

S2

1

2

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation

S1

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

16 / 22

Tree-like hypergraphs are not enough

1

S1 →

S2 S2

1 1

2 2

p

1

q

HRG

1

2
S2 →

S1

1

r

p

r

q

r

p

r

q

r

q

derivation tree derivation

Each production rule maps to a tree-like hypergraph.

Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged
16 / 22

Tree-like grammars

Let M(G) ≜ {H ∈ L(G) | two or more anchors are merged in a derivation of H }.

Definition
A tree-like grammar is an HRG G = (N,Σ,P, S) where
1. H is a tree-like hypergraph for each (X,H) ∈ P,
2. M(G) = ∅.

Theorem
Let G be an HRG where each production rule maps to tree-like hypergraphs. Then
one can construct a tree-like grammar K with L(K) = L(G) \ M(G).

17 / 22

Tree-like grammars

Theorem
For each tree-like grammar G there exists an MSO sentence φG such that for each
hypergraph H

H ∈ L(G) if and only if H |= φG.

Corollary
The class of languages generated by tree-like grammars is closed under union,
intersection and difference.

Corollary
The inclusion problem for tree-like grammars is decidable.

What about separation logic?

18 / 22

Tree-like grammars

Theorem
For each tree-like grammar G there exists an MSO sentence φG such that for each
hypergraph H

H ∈ L(G) if and only if H |= φG.

Corollary
The class of languages generated by tree-like grammars is closed under union,
intersection and difference.

Corollary
The inclusion problem for tree-like grammars is decidable.

What about separation logic?

18 / 22

Tree-like separation logic

Let PT(φ) ≜ {{x, y} | ∃s ∈ Σ . x.s 7→ y occurs in φ}.
Definition
Let φ(⃗x) be a separation logic formula. φ(⃗x) is tree-like iff
1. x1 ∈ A for each A ∈ PT(φ),
2. there exists A ∈ PT(φ) with y1 ∈ A for each predicate P(⃗y) in φ(⃗x).

S(x1, x2, x3, x4) =

∃y1, y2, y3 . x1.l 7→ y1
∗ x1.r 7→ y2
∗ x1.p 7→ x2
∗ x1.n 7→ null
∗ S(y1, x1, x3, y3)
∗ S(y2, x1, y3, x4)

1

2

S S

3 4

p

l r

1 1

3 4

2

3 4

2

anchor node ext(1)

att(e)(1)

19 / 22

Tree-like separation logic

For P(⃗x) = φ1(⃗x) ∨ . . . ∨ φn(⃗x) ∈ Γ, let Γ(P) = {φ1(⃗x), . . . , φn(⃗x)}.
Definition
Environment Γ is tree-like iff for each P,Q ∈ Pred
1. φ(⃗x) is tree-like for each φ(⃗x) ∈ Γ(P).
2. x1 ̸= y1 holds for each φ(⃗x) ∈ Γ(P), ψ(⃗y) ∈ Γ(Q).

Theorem
Every tree-like separation logic formula can be translated into a language-equivalent
tree-like data structure grammar and vice versa.

Corollary
The entailment problem for tree-like separation logic is decidable.

weak alternative to 2:
There exists ∅ ̸= ∆ ⊆ Σ such that for each φ(⃗x) ∈ Γ(P)

∆ ⊆ {s ∈ Σ | x1.s 7→ y occurs in φ(⃗x) for some y}.

20 / 22

Tree-like separation logic

For P(⃗x) = φ1(⃗x) ∨ . . . ∨ φn(⃗x) ∈ Γ, let Γ(P) = {φ1(⃗x), . . . , φn(⃗x)}.
Definition
Environment Γ is tree-like iff for each P,Q ∈ Pred
1. φ(⃗x) is tree-like for each φ(⃗x) ∈ Γ(P).
2. x1 ̸= y1 holds for each φ(⃗x) ∈ Γ(P), ψ(⃗y) ∈ Γ(Q).

Theorem
Every tree-like separation logic formula can be translated into a language-equivalent
tree-like data structure grammar and vice versa.

Corollary
The entailment problem for tree-like separation logic is decidable.

weak alternative to 2:
There exists ∅ ̸= ∆ ⊆ Σ such that for each φ(⃗x) ∈ Γ(P)

∆ ⊆ {s ∈ Σ | x1.s 7→ y occurs in φ(⃗x) for some y}.

20 / 22

Tree-like separation logic

For P(⃗x) = φ1(⃗x) ∨ . . . ∨ φn(⃗x) ∈ Γ, let Γ(P) = {φ1(⃗x), . . . , φn(⃗x)}.
Definition
Environment Γ is tree-like iff for each P,Q ∈ Pred
1. φ(⃗x) is tree-like for each φ(⃗x) ∈ Γ(P).
2. x1 ̸= y1 holds for each φ(⃗x) ∈ Γ(P), ψ(⃗y) ∈ Γ(Q).

Theorem
Every tree-like separation logic formula can be translated into a language-equivalent
tree-like data structure grammar and vice versa.

Corollary
The entailment problem for tree-like separation logic is decidable.

weak alternative to 2:
There exists ∅ ̸= ∆ ⊆ Σ such that for each φ(⃗x) ∈ Γ(P)

∆ ⊆ {s ∈ Σ | x1.s 7→ y occurs in φ(⃗x) for some y}.
20 / 22

Spaghetti stacks

1

2S →

S S

p h p

1 12 2

1

2

h

S(x1, x2) =

∃y1, y2 . x1.h 7→ x2
∗ y1.p 7→ x1 ∗ y2.p 7→ x2
∗ S(y1, x2)
∗ S(y2, x2)

∨
x1.h 7→ x2

Theorem
Tree-like separation logic is strictly more expressive than separation logic with
bounded tree width 3.

3Iosif, R. et al. ”The tree width of separation logic with recursive definitions.” CADE, 2013.
21 / 22

Conclusion

Wrap-up
• Close relationship between separation logic

and data structure grammars
• (Extended) inclusion problem decidable for

tree-like grammars
• (Extended) entailment problem decidable for

tree-like separation logic
• Tree-like SL is more expressive than SLbtw

Future Work
• Complexity analysis?
• Tractable fragments of tree-like grammars?

SLRD HRG MSO

TLGDSGSL

TL-DSGSLTL

∆− DSG∆− SLTL

SLbtw

=

⊂ ⊂ ⊂

⊂

⊂

⊂ ⊂

=

=

⊂ ⊂

⊂⊂

22 / 22

	Motivation
	Motivation: Separation Logic Entailments
	Motivation: Graph Grammar Language Inclusion
	Overview
	Heaps
	Separation logic with recursive definitions
	Graph grammars in a nutshell
	Data structure grammar for trees with linked leaves
	Separation logic and hyperedge replacement grammars
	Towards a decidable inclusion problem
	Towards MSO definable graph grammars
	Tree-like hypergraphs
	Why tree-like hypergraphs?
	Tree-like hypergraphs are not enough
	Tree-like grammars
	Tree-like separation logic
	Spaghetti stacks
	Conclusion

