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Motivation

Typical programming errors
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Motivation

Typical programming errors

= Dereferencing null (or disposed) pointers
= Accidental invalidation of data structures
= Creation of memory leaks

—> need to reason automatically about shared mutable data structures

Why separation logic? Why graph grammars?

= extension of Hoare-logic to reason about = extension of context-free grammars to
heaps describe graphs

= Hoare-style proofs, shape analysis, symbolic = shape analysis, symbolic execution, natural
execution... language processing...

= CYCLIST, INFER, VERIFAST... = JUGGRNAUT, GROOVE..

= suffers from undecidable entailment problem = suffers from undecidable inclusion problem
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Motivation: Separation Logic Entailments

void addTwo(Node h) {

Node u = new Node();
u.next = h;

h = u;

u = new Node();

u.next = h;

h = u;

1J. Brotherston et al. "Automated cyclic entailment proofs in separation logic.” CADE, 2011.
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Motivation: Separation Logic Entailments

{ls(h,null)}
void addTwo(Node h) {

Node u = new Node();
u.next = h;
h = u;

new Node();

o
I

u.next = h;

h = u;

}

{Is(h,null)}

1J. Brotherston et al. "Automated cyclic entailment proofs in separation logic.” CADE, 2011.
3/22



Motivation: Separation Logic Entailments

{ls(h,null)}
void addTwo(Node h) { “Effective procedures for establishing

entailments are at the foundation of

Node u = new Node(); _
automatic verification based on separation
u.next = h; |OgiC”1
h = u;
u = new Node();

u.next = h;

h = u;
{3Ix,y,z. Is(x,null) * y = x*x u+—> zA h= u}
{ls(h,null)}

}

{Is(h,null)}

1J. Brotherston et al. "Automated cyclic entailment proofs in separation logic.” CADE, 2011.
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Motivation: Graph Grammar Language Inclusion

{Is(h,null)}
> void addTwo(Node h) {
Node u = new Node() ; null

u.next = h; -
h =u; 1 T 2

u = new Node () ;
u.next = h;
h =u;

}

{Is(h,null)}
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Motivation: Graph Grammar Language Inclusion

{Is(h,null)}

void addTwo(Node h) {
Node u = new Node() ;
u.next = h;

> h=nu;

u = new Node() ;
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Motivation: Graph Grammar Language Inclusion

{Is(h,null)}

void addTwo(Node h) {

Node u = new Node() ; null
u.next = h;
> h =u;

u = new Node () ;

u.next = h;

}h=u;
{Is(h,null)}
O
O——7 -2
> —@ | —O0—I-e
. O

>

language inclusion

null
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Overview

How are these problems related?

U u o U
What are decidable fragments?
SL = [Ds6  TiG
U O U
SLTL — TL-DSG
U U
» undecidable entailment problem A — Sl — A — DSG
» decidable entailment problem
= new fragments U

S thw
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Heaps

h : N ——sgnie Np

1 2 4 5 6 7 8 9 locations
0| |4 1l (6] (4] |8 |6] |0 values
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Heaps

h @ N ——s5nie No

object
4 9 locations
1 0 values
P n selectors

4n—6 * 8&p—06

null
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Separation logic with recursive definitions

Separation logic formulae ¢(Xx)

p(x) = . o(Xy) An(Xy)
0(2) = zis+—z| P2) | o*x0o

m(2) = zi=z | TAT

symbolic heaps
spatial formulae

pure formulae
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Separation logic with recursive definitions

Separation logic formulae ¢(Xx)

e(X) == dy.o(xy) An(Xy) symbolic heaps
0(2) = zis+—z| P2) | o*x0o spatial formulae
m(2) = zi=z | TAT pure formulae

Predicate definitions P(X) = ©1(X) V...V @k(X)

Example

Is(x1,x2) = (empAxi=x) V (Jy.xi.n— yxIs(y, x))
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Separation logic with recursive definitions

Separation logic formulae ¢(Xx)

e(X) == dy.o(xy) An(Xy) symbolic heaps
0(2) = zis+—z| P2) | o*x0o spatial formulae
m(2) = zi=z | TAT pure formulae

—

Predicate definitions P(X) = ©1(X) V...V @k(X)

Example

Is(x1,x2) = (empAxi=x) V (Jy.xi.n— yxIs(y, x))

Environments [' = {P(X) | P € Pred}

= set of predicate definitions

= every existentially quantified variable is eventually allocated
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Graph grammars in a nutshell

) finite alphabet O
rk : 2 — N  ranking function 2
A hypergraph (HG) is a tuple (V, E, att, lab, ext) with P
= set of nodes V, set of hyperedges E, . 1 .
_ | D ) P
= labelling lab : E— %, rk(e) = lab(e), P
= attachment att : E— V* rk(e) = |att(e)|, 2 k 2
= external nodes ext € V*. — X
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Graph grammars in a nutshell

> finite alphabet
rk : 2 — N  ranking function

A hypergraph (HG) is a tuple (V, E, att, lab, ext) with
= set of nodes V, set of hyperedges E,

= labelling lab : E— %, rk(e) = lab(e),

= attachment att : E— VW rk(e) = |att(e)],

= external nodes ext € V*.

Hyperedge replacement

A heap configuration (HC) is a hypergraph with
= rk(e) = 2 for each e € E,

= at most one outgoing edge is labelled s € ¥ for each v € V.
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Graph grammars in a nutshell

A hyperedge replacement grammar (HRG) is a tuple G = (N, %, P, S) with
= disjoint sets of nonterminals N and terminals %,
= set of production rules P C N x HG of the form X — H rk(X) = |exty
= initial symbol S € N.

!

Derivations, derivation trees, languages are defined as for context-free grammars.
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Graph grammars in a nutshell

A hyperedge replacement grammar (HRG) is a tuple G = (N, %, P, S) with
= disjoint sets of nonterminals N and terminals %,
= set of production rules P C N x HG of the form X — H rk(X) = |exty
= initial symbol S € N.

!

Derivations, derivation trees, languages are defined as for context-free grammars.

A data structure grammar (DSG) is an HRG generating heap configurations only.

Theorem
For each HRG G one can construct a DSG K such that L(K) = L(G) N HC.
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Data structure grammar for trees with linked leaves

5-)51

5—>52

data structure grammar

|I>

derivation tree

[I>

derivation

QP

S

o
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5-)51
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Separation logic and hyperedge replacement grammars

Theorem (Jansen et al.!)

Every separation logic formula can be translated into a language-equivalent data
structure grammar and vice versa.

j;<X17 X2,y X3, )(4> —

y1, y2, y3 - x1 = (1, y2, xo, null)
* f;<)/17 X1, X3, )43)
* S<y27X17y37X4>

V

E|y1 . X] <X3,y1,X2, null)
X X3 (null, null,xl,yl)

* Yy — (null, I”IU||,X1,X4>

1C. Jansen et al. "Generating inductive predicates for symbolic execution of pointer-manipulating programs.” ICGT, 2014.
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Towards a decidable inclusion problem

Theorem (Courcelle?)

For each HRG G and MSQO sentence @, one can effectively construct an HRG K such
that

LK) = L(G)NL(p) = {He L(G) | H= ¢}.

2Courcelle, B. "The monadic second-order logic of graphs. |. Recognizable sets of finite graphs.” Information and computation, 1990.
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Towards a decidable inclusion problem

Theorem (Courcelle?)

For each HRG G and MSQO sentence @, one can effectively construct an HRG K such
that

LK) = L(G)NL(p) = {He L(G) | H= ¢}.

Let G, K be data structure grammars.
Assume there exists MSO sentence ¢ with L(K) = L(p).

& LG NL—p) =0

G is an arbitrary data structure grammar!

2Courcelle, B. "The monadic second-order logic of graphs. |. Recognizable sets of finite graphs.” Information and computation, 1990.
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Towards MSQO definable graph grammars

Courcelle’: MSO definable graph

languages allow reconstruction of P

derivation trees 2 1P
S—

Derivation tree :

= Nodes: all anchor nodes ext(1) ; 54

= Children: att(e)(1) if lab(e) € N (35

!Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
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Towards MSQO definable graph grammars

Courcelle’: MSO definable graph

languages allow reconstruction of
derivation trees
S—

Derivation tree

= Nodes: all anchor nodes ext(1)

= Children: att(e)(1) if lab(e) € N

MSQO construction

1. Create witness for derivation of H by G

i. Extract derivation tree t from H
ii. Assign each edge to a node in t O

2. H € L(G) iff witness specifies valid
derivation of H by G OO

OO

!Courcelle, B. "The monadic second-order logic of graphs V: On closing the gap between definability and recognizability.” Theoretical Computer Science, 1991.
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Tree-like hypergraphs

Definition

Hypergraph H = (V, E, att, lab, ext) is a tree-like hypergraph iff for each e € E
1. lab(e) € ¥ implies € |att(e)],

2. lab(e) € N implies 3¢ . lab(€') € ¥ and att(e)(1) € [att(€))].

att(e)(1)

First approach: Every production rule maps to a tree-like hypergraph

14 /22



Why tree-like hypergraphs?

L = {a"b" | n>1}is not MSO definable.
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Why tree-like hypergraphs?

L = {a"b" | n>1}is not MSO definable.

s+ @=O0—I-—0>-0 ->0—@

1. false lab(e) € X implies ext(1) € [att(e)]
2. true lab(e) € N implies d€ . lab(€') € ¥ and att(e)(1) € [att(€)]

1 2 1

S —O

S 3

51% ®a>

O

b

[ ==e) S$S— @—@

Q

51% ®a>

1. true lab(e) € X implies ext(1) € [att(e)]
2. false lab(e) € N implies 3¢ . lab(€') € ¥ and att(e)(1) € [att(€)]
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Why tree-like hypergraphs?

L = {a"b" | n>1}is not MSO definable.

S (:£> d ><::> 1

S

1. false lab(e) € X implies ext(1) € [att(e)]
2. true lab(e) € N implies d€ . lab(€') € ¥ and att(e)(1) € [att(€)]

5;1 R (ZE) a ><::> 1 5;1 2 <::> 1 552 2 (EZ)

1 2 b
SS— @ ? (O— S —2 S = O—Q@
1. true lab(e) € X implies ext(1) € [att(e)]

2. false lab(e) € N implies 3¢ . lab(€') € ¥ and att(e)(1) € [att(€)]

For context-free grammars our conditions yield right-linear grammars.

15 /22



Tree-like hypergraphs are not enough

HRG derivation tree

Each production rule maps to a tree-like hypergraph.

derivation

/ 52
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HRG derivation tree

@, @® /P
S — 1 1 : Sy — é r
3 3 151
P q r

Each production rule maps to a tree-like hypergraph.

derivation
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Tree-like hypergraphs are not enough

HRG derivation tree

@, @® /P
S — 1 1 : Sy — é lr
3 3 151 K
P q r

Each production rule maps to a tree-like hypergraph.
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Tree-like hypergraphs are not enough

HRG derivation tree

@ @ p
S — ° i S, — /N
| ) ! rooor
1 1 @ |
1 q
Sy Sy 3
P q r

Each production rule maps to a tree-like hypergraph.

derivation
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Tree-like hypergraphs are not enough

HRG derivation tree derivation
5
@ @ P

) , /\

51 — 52 — r r

L @ | |

1 q P
S S s
p q r

Each production rule maps to a tree-like hypergraph.
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Tree-like hypergraphs are not enough

HRG derivation tree derivation
S
@ @ p -
S — ° i Sy — /)
1 9 r r
L @ | |
1 q P 2
= = 5 r\/ ﬁD
5
P q r

Each production rule maps to a tree-like hypergraph.
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Tree-like hypergraphs are not enough

HRG derivation tree derivation

@ @ p
S — ° i S, — /N
1 2 r r
1 1 @ | |
! q P 2
! >
P q r q

Each production rule maps to a tree-like hypergraph.
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Tree-like hypergraphs are not enough

HRG derivation tree

@ @ p
: : /\
51 — 52 — r r
1 1 @ | |
1 q P
> > 3 /\
r r
!
P q r q

Each production rule maps to a tree-like hypergraph.

derivation
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Tree-like hypergraphs are not enough

HRG derivation tree

@ @ p
: : /\
51 — 52 — r r
1 1 @ | |
1 q P
> > 3 /\
r r
1
p q r q q

Each production rule maps to a tree-like hypergraph.
Language of “even stars” is not MSO definable.

Observation: Anchor nodes are merged

derivation
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Tree-like grammars

Let M(G) & {H € L(G) | two or more anchors are merged in a derivation of H }.

Definition
A tree-like grammar is an HRG G = (N, X, P, S) where

1. His a tree-like hypergraph for each (X, H) € P,
2. M(G) = 0.

Theorem

Let G be an HRG where each production rule maps to tree-like hypergraphs. Then
one can construct a tree-like grammar K with L(K) = L(G) \ M(G).

17 /22



Tree-like grammars

Theorem

For each tree-like grammar G there exists an MSO sentence @ such that for each
hypergraph H

H € L(G) if and only if H = pg.

Corollary

The class of languages generated by tree-like grammars is closed under union,
intersection and difference.

Corollary

The inclusion problem for tree-like grammars is decidable.
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Tree-like grammars

Theorem

For each tree-like grammar G there exists an MSO sentence @ such that for each
hypergraph H

H € L(G) if and only if H = pg.

Corollary

The class of languages generated by tree-like grammars is closed under union,
intersection and difference.

Corollary

The inclusion problem for tree-like grammars is decidable.

What about separation logic?

18 /22



Tree-like separation logic

Let PT(¢) = {{x,y} | Is€ X . x.s+— yoccurs in ¢}.
Definition
Let ©(X) be a separation logic formula. (X) is tree-like iff

1. x, € Afor each A € PT(yp),
2. there exists A € PT(y) with y; € A for each predicate P(y) in ¢(X).

f;( y X245 X3 )Ci> — (::)

Ay, v, y3 - L= P
* =y 17
* AP X 2 © o att(e)(1)
x x.n +— null | 1
* S(y1, %1, x3, y3) S S
*

f;()/27 » Y35 )(4> <%f§ 4 3 >i§>
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Tree-like separation logic

For P(X) = 01(X) V...V ,(x) € T, let I'(P) = {p1(X), ..., on(X)}.
Definition

Environment 1" is tree-like iff for each P, Q € Pred

1. ¢(X) is tree-like for each p(x) € T'(P).

2. x1 # y1 holds for each p(X) € I'(P), ¥(y) € I'(Q).
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Tree-like separation logic

For P(X) = p1(X) V...V u(X) € T, let T'(P) = {@1(X), ..., on(X)}.
Definition

Environment 1" is tree-like iff for each P, Q € Pred

1. ¢(X) is tree-like for each p(x) € T'(P).

2. x1 # y1 holds for each p(X) € I'(P), ¥(y) € I'(Q).

Theorem

Every tree-like separation logic formula can be translated into a language-equivalent
tree-like data structure grammar and vice versa.

Corollary

The entailment problem for tree-like separation logic is decidable.

weak alternative to 2:
There exists ) # A C X such that for each p(X) € I'(P)

A C {seX | xi.s+> yoccurs in ¢(X) for some y}.

20/ 22



Spaghetti stacks

5<X17 X2) —

EH}@»,)AZ . )(1./7 > X9
X Y1.pt2 X1 ok Yo.p= X0

S— * f;()/lv )QZ>
* f;()/Qv )QZ>
\Y4
x1.h — xo
Theorem

Tree-like separation logic is strictly more expressive than separation logic with
bounded tree width 3.

%losif, R. et al. "The tree width of separation logic with recursive definitions.” CADE, 2013.
21/22



Conclusion

Wrap-up
= Close relationship between separation logic

and data structure grammars

= (Extended) inclusion problem decidable for
tree-like grammars

= (Extended) entailment problem decidable for
tree-like separation logic

= Tree-like SL is more expressive than SLy;,

Future Work

= Complexity analysis?
= Tractable fragments of tree-like grammars?

A — SLTL

S thW

HRG MSO
u o U
DSG TLG
o U
= TL-DSG
U
= A — DSG
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