
1

WRAP-UP & CONCLUSION
02245

Christoph Matheja – 02245 – Program Verification

2

Course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Tactics &
challenges

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency
(Bonus)

Front-end
verifiers

Wrap-up &
Conclusion

Course Summary

Take five minutes to collect the main concepts that you have
learned about in the course.

Christoph Matheja – 02245 – Program Verification

4

Course
Verification
Stack

§ Techniques and tools
for automated program
verification

§ Wishlist for each
translation A B
- Soundness: If B is

valid, then A is valid
- Completeness: If A is

valid, then B is valid
- Efficiency: B’s size is

reasonable wrt. A
- Explainability: We can

reconstruct errors in
A from errors in B

Christoph Matheja – 02245 – Program Verification

source code
annotated with
specifications

Loop-free programs

Proof obligations

Passive Programs

Concurrency

SMT

Loops and procedures

Datatypes & functions

Heaps & objects

5Christoph Matheja – 02245 – Program Verification

Developing verification methodologies

• Programming
features

• High-quality
specifications

Verification
Problem

• Verification
conditions

• Proof rules
• Soundness,

completeness

Formalization
• Code annotations
• Modularity and

Framing
• Abstraction

Methodology

• Encodings
• Ghost code
• Inference

Automation

Foundational reasoning principles:
§ Weakest preconditions
§ Floyd-Hoare logic
§ permission-based separation logic

General-purpose tools:
§ First-order predicate logic
§ SAT/SMT solvers
§ Patterns, limited functions

Verifier architecture:
§ Modern verification stack
§ Intermediate languages
§ Error reporting

Feedback for the first iteration of the course

Christoph Matheja – 02245 – Program Verification

https://forms.gle/58vES1Vz38qX6jVq5

https://forms.gle/58vES1Vz38qX6jVq5

7

§ Signature Σ determines available symbols
§ Σ-structure 𝔄 assigns meaning to symbols
§ Σ-assignment 𝛽 assigns values to variables

§ Decidability of SMT problem depends on
- the underlying theories
- the logic fragment (e.g. without quantifiers)

Christoph Matheja – 02245 – Program Verification

Satisfiability Modulo Theories

A Σ-formula F is satisfiable modulo the theory
given by the set of axioms AX iff there exists a
Σ-interpretation ℑ such that
§ ℑ ⊨ F , and
§ ℑ ⊨ G for every sentence G in AX.

FOL
formula F

ℑ = (𝔄, 𝛽) ⊨ F if and only if

𝑡! = 𝑡" ℑ 𝑡! = ℑ(𝑡")
𝑅(𝑡!, … , 𝑡#) ℑ 𝑡! , … , ℑ 𝑡# ∈ 𝑅𝔄

G ∧ H ℑ ⊨ G and ℑ ⊨ H
G ⇒ H If ℑ ⊨ G, then ℑ ⊨ H

∃𝑥: 𝐓 (G) For some v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ G
∀𝑥: 𝐓 (G) For all v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ G

8

Verification conditions for passive programs

Christoph Matheja – 02245 – Program Verification

The triple { Pre } S { Post } is valid
if and only if
when program S is started in any state in Pre,
then S terminates in a state in Post
if and only if
Pre ==> WP(S, Post) valid

S EWP(S, Q) MWP(S, M)

assert R R && Q M ∪ { R }
assume R R ==> Q { P ==> Q | Q ∈ M }
S1; S2 EWP(S1, EWP(S2, Q)) MWP(S1, MWP(S2, M))

S1 [] S2 (B == Q) ==> EWP(S1, B) && EWP(S2, B)
where B is fresh

MWP(S1, M) ∪ MWP(S2, M)

We obtain passive programs from loop-free programs by transforming them into dynamic single assignment form

9

Loops – Partial Correctness

Christoph Matheja – 02245 – Program Verification

{ I && b } S { I }

{ I } while (b) { S } { I && !b }

// prior code

assert I

// havoc all loop targets

assume I

{
assume b

// encoding of S

assert I
assume false

} [] {
assume !b

}

// subsequent code

while (i <= n)
invariant 0 <= r && 1 <= i

{
r := r + i
i := i + 1

}

Frame rule
{ P } S { Q } S modifies no var. in R

{ P && R } S { Q && R }

WLP(while (b)
invariant I { S }, Q) ::= I

if I is a loop invariant

10

Proof obligations

Christoph Matheja – 02245 – Program Verification

§ Goal: procedure-modular verification
§ Challenge: framing local/global variables
§ Procedure implementation satisfies procedure contract

§ Verify caller against contract

valid: { P } S { Q }

Call rule

{ P } method foo(x:T) returns (y:T) { Q }

{ P[x / a] } z := foo(a) { Q[x / a][z / y] }

account for arguments (assuming z does not appear in a)

consult declared contract
assert P[x/a]

var e:T := a

havoc z

assume Q[x/e][y/z]

assume P

// encoding of S

assert Q

x := 4
y := 4
z := foo(x)
assert y + z == 20

11

Total correctness = Partial Correctness + Termination

Christoph Matheja – 02245 – Program Verification

A variant is an an expression V that decreases
in every loop iteration / recursive call
(for some well-founded ordering <).

iterations / recursive calls

𝑉! > 𝑉" > 𝑉% > 𝑉& > … > 𝑉'

{ I && b && V == z } S { I && V < z }

{ I } while (b) { S } { I && !b }

while (i <= n) {
var z: Int := n - i + 1
assert z >= 0
r := r + i
i := i + 1
assert n - i + 1 >= 0 && n - i + 1 < z

}

define V(m) (m)

method factorial(n: Int) returns (res: Int)
requires 0 <= n
// decreases V(m)

{
var v: Int := V(n); assert v >= 0
if (n == 0) {
res := 1

} else {
assert V(n-1) < v
res := factorial(n-1); res := n * res

}
}

12

Datatypes

Christoph Matheja – 02245 – Program Verification

§ We encode custom data types into
SMT by axiomatizing them
- new type è uninterpreted sort
- new operation è uninterpreted function
- new axiom è assert axiom

(declare-sort Set)

(declare-const empty Set)
(declare-fun card (Set) Int)
; ...

(assert (= (card empty) 0)) ; axiom
; ...

Verification condition:
BP ==> P ==> WP(S, Q) valid

Background Predicate:
conjunction of all axioms

domain Set {
function empty(): Set
function card(s: Set): Int
// ...

axiom card_empty { card(empty()) == 0 }
// ...

}

13

§ Writing specifications often requires a suitable mathematical vocabulary

§ Functions are encoded through their definitional axiom

§ Challenges:
- Well-definedness conditions for partial functions
- Recursive functions may lead to non-termination è lemmas, patterns, limited functions
- May increase trusted code base

Christoph Matheja – 02245 – Program Verification

Functions

function f(x: T): TT
requires P
ensures Q

{ E }

function f(x: T): TT

axiom {
forall x: T ::
P ==> f(x) == E && Q[result/f(x)]

}

14

Heap data structures pose four major
challenges for sequential verification:

§ Reasoning about aliasing

§ Framing, especially for dynamic
data structures

§ Writing specifications that preserve
information hiding

§ Data structures with complex
sharing

Heaps & Objects

Christoph Matheja – 02245 – Program Verification

§ Object based language with field
accesses x.f

§ Implicit garbage collection

§ Heaps map references and field
names to values

§ Represented as a global variable

type HeapType = Map<T>[(Ref, Field T), T]

var Heap: HeapType

15

§ Read or write access to memory location x.f requires permission acc(x.f)
- Refinement: fractional permissions to distinguish no, read, and write accesses

§ Permissions can be transferred, but neither duplicated nor forged
- inhale P: obtain all permissions required by assertion P and assume all logical constraints
- exhale P: assert all logical constraints, check and remove all permissions required by

assertion P, and havoc any locations to which all permission is lost

§ Intuition: permission is held by methods, loop iterations, or predicate instances

§ Separating conjunction P ∗ Q

Christoph Matheja – 02245 – Program Verification

Permission-based separation logic

acc(x.f) * acc(y.f) ==> x != y

where S does not assign to
a variable that is free in R

Frame rule
{ P } S { Q }

{ P * R } S { Q * R }

16

Predicates

Christoph Matheja – 02245 – Program Verification

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

§ Predicates enable specifying
§ data structure permissions
§ data structure invariants
§ lock invariants
§ other resources (e.g. runtimes)

§ Iso-recursive semantics
distinguishes between a predicate
instance and its (recursive) body

§ An unfold statement exchanges a
predicate instance for its body

§ A fold statement exchanges a
predicate body for a predicate instance

inhale list(x)
unfold list(x)
x.next := null
fold list(x)
exhale list(x)

inhale list(x)
unfold list(x)
x.next := null

17

Abstraction

Christoph Matheja – 02245 – Program Verification

function content(this: Ref): Seq[Int]
{
this.next == null
? Seq[Int]()
: Seq(this.elem) ++ content(this.next)

}

predicate list(this: Ref, content: Seq[Int]) {
acc(this.elem) && acc(this.next) &&
(this.next == null ==> content == Seq[Int]()) &&
(this.next != null ==> 0 < |content| &&

content[0] == this.elem &&
list(this.next, content[1..]))

}

Data abstraction via predicate arguments Data abstraction via abstraction functions

18

Ghost code

§ Code that is needed for verification,
but not for the execution of the code
- Fold and unfold statements
- Auxiliary variables and fields
- Abstraction functions
- Lemmas
- Assertions for quantifier instantiations
- Entire methods for internally traversing

data structures (addAtEnd)

Christoph Matheja – 02245 – Program Verification

§ General rule for ghost code
The execution of ghost code must not
affect the behavior of regular code

§ Examples
- Ghost variables must not occur in

conditions of regular conditionals and loops
- Ghost statements must not assign to

regular variables
- Ghost code must terminate

19

a1 := new(bal)
a2 := new(bal)
a3 := new(bal)
deposit(a2, 150)

deposit(a1, 50) transfer(a2, a3, 100)

assert a1.bal == a2.bal

a1

a2
a3

a1

a2
a3

Concurrency: Thread-local state

Thread-local state:
parallel branches operate
on disjoint memory

Christoph Matheja – 02245 – Program Verification

a1

a2
a3

a1

a2
a3

Parallel composition rule
{ P1 } S1 { Q1 } { P2 } S2 { Q2 }

{ P1 * P2 } S1 || S2 { Q1 * Q2 }

Intuition: permissions
are held by methods,
loop iterations,
predicate instances,
and threads

exhale P1[…]
exhale P2[…]
havoc res1, res2
inhale Q1[…]
inhale Q2[…]

Extension: unstructured fork-join parallelism

20

Concurrency: shared state and synchronization

Christoph Matheja – 02245 – Program Verification

method produce(buf: Ref)
{
while(true) {
acquire buf
if(buf.val == null) {
buf.val := new()

}
release buf

}
}

method consume(buf: Ref)
{
while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null

}
release buf

}
}

class Buffer {
lock invariant acc(this.val)
Product val;

}

buf

buf buf

Intuition: permissions are
held by methods, loop
iterations, predicate
instances, threads, and locks

assert acc(buf.isLock, wildcard)
inhale acc(buf.val)

exhale acc(buf.val)

21

Many potential project topics in our group – get in touch!

Christoph Matheja – 02245 – Program Verification

Open research topics at all levels
§ Foundational program logics
§ New frontend verifiers
§ Tool automation
§ Advanced specification features
§ Specification inference
§ Debugging tools

§ We offer student projects on all aspects
of program verification & formal methods

§ Specification and verification techniques
for new program features & properties

§ Theoretical foundations
§ New proof rules & program logics
§ Automation
§ Performance optimization
§ Case studies
§ IDE support

https://www.pm.inf.ethz.ch/education/student-projects.html

22

< END >

Thank you for attending the course!

Questions?

Christoph Matheja – 02245 – Program Verification

