02245

WRAP-UP & CONCLUSION

=
(=

Y

Christoph Matheja — 02245 — Program Verification

Course outline

Foundational

. Building a Loops and
Reg Soning ST s first verifier procedures
Principles
Advanced I Tactics & I Heaps and I Abstraction in
data types challenges objects specifications
Permission ; Concurrency l Front-end I Wrap-up &
models (Bonus) verifiers Conclusion

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Course Summary

Take five minutes to collect the main concepts that you have
learned about in the course.

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Course

Verification
Stack

source code
annotated with

specifications

Concurrency

4

Heaps & objects

-

Datatypes & functions

-

Loops and procedures

-

Loop-free programs

-

Passive Programs

-

Proof obligations

wn
<
=

* Techniques and tools
for automated program
verification

= \Wishlist for each
translation A = B

Soundness: If B is
valid, then A is valid

Completeness: If A is
valid, then B is valid
B's size is
reasonable wrt. A
We can

reconstruct errors in
A from errors in B

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Developing verification methodologies

4 _ N
* Programming

features
« High-quality
specifications

Verification
Problem

Formalization

» Verification
conditions

* Proof rules

e Soundness,
completeness

-

« Code annotations

* Modularity and
Framing

 Abstraction

Methodology

\

« Encodings
* Ghost code
* |Inference

_

= Weakest preconditions
» Floyd-Hoare logic
= permission-based separation logic

= Modern verification stack
* Intermediate languages
= Error reporting

= First-order predicate logic
= SAT/SMT solvers
= Patterns, limited functions

DT

(=

Y

Christoph Matheja — 02245 — Program Verification

5

Feedback for the first iteration of the course

Of 0
T

https://forms.qle/58vES1Vz38gX6iVq5

=
—
=

Christoph Matheja — 02245 — Program Verification

i

https://forms.gle/58vES1Vz38qX6jVq5

Satisfiability Modulo Theories

FOL 3 =, pB) = Fif and only if -
formula F .

t;1 =t 3(t1) = 3(t2) "
R(ty, ..., t,) (3(t), -, 3(t)) € R™

GAH SEGand I EH -

G=>H If 3 £ G, then S E H

3x:T(G) Forsomeve T J[x :=v]EG
vx: T (G) Forallve T% 3[x ==v] £G

A 2-formula F is satisfiable modulo the theory
given by the set of axioms AX iff there exists a
Z-interpretation J such that

= JE=F,and

» 3 =G for every sentence G in AX.

Signature X determines available symbols
Z-structure A assigns meaning to symbols
Z-assignment § assigns values to variables

Decidability of SMT problem depends on
- the underlying theories
- the logic fragment (e.g. without quantifiers)

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Verification conditions for passive programs

The triple { Pre } S { Post } isvalid { Pre } S { Post }

if and only if
when program S is started in any state in Pre,
then S terminates in a state in FPost

execution

if and only if
Pre ==> WP(S, Post) valid

-
————————

assert R R & Q MU{R}

assume R R ==>Q {P==>Q | QeM}
S1; S2 EWP(S1, EWP(S2, Q)) MWP(S1, MWP(S2, M))
S1 [] s2 (B == Q) ==> EWP(S1, B) && EWP(S2, B) MWP(S1, M) UMWP(S2, M)

where B is fresh

We obtain passive programs from loop-free programs by transforming them into dynamic single assignment form

DT

(=

Christoph Matheja — 02245 — Program Verification 8

Y

Loops —

Correctness
&& b S
while (b) { S } 8& b

while (i <= n)
invariant 9 <= r & 1 <=1

{ . . WLP(while (b)

P (s} Q
} ' if T is a loop invariant
Frame rule

{P}S{Q} S modifiesnovar.inR
{ P& R} S {Q& R}

// prior code
assert I
// havoc all Lloop targets

assume I

{

assume b
// encoding of S

assert T
assume false

PO A

assume !b

}

// subsequent code

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Proof obligations

* Procedure implementation satisfies procedure contract

Goal:
= Challenge:

valid: S

= Verify caller against contract

consult declared contract
Call rule j/’_

method foo(x:T) returns (y:T)

{

[x/a]l}z:=foo(a) {O[x/all[z/y]}

1 I T

account for arguments (assuming z does not appear in a)

X := 4

y =4

z := foo(x)
assert(y + z == 20

assume
// encoding of S

assert

assert P[x/a]

vare:T := a
havoc z

assume O[x/e][y/zZ]

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

10

Total correctness = Partial Correctness + Termination

A

{ I8 b &&

is an an expression \ that decreases
in every loop iteration / recursive call

(for some well-founded ordering <).

}s {I8&&

while (i <= n) {

l—lo

{I}while (b) {S} {I& !b}

=

iterations / recursive calls

—

ViV, >Va>V,> > 1

define (m)

method factorial(n: Int) returns (res: Int)
requires O <= n
// decreases V(m)

{
if (n == 0) {
res :=1
} else {
res := factorial(); res :=n * res
}
}

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 11

Datatypes

domain Set {
function empty(): Set

= We encode custom data types into function card(s: Set): Int

SMT by axiomatizing them Y/
- new type =» uninterpreted sort .
_ _ _ axiom card_empty { card(empty()) == 0 }
- new operation = uninterpreted function a
- new axiom =» assert axiom }

Background Predicate:

conjunction of all axioms (declare-sort set)

(declare-const empty Set)
(declare-fun card (Set) Int)
Verification condition: ;

BP ==> P ==> WP(S, Q) valid (assert (= (card empty) ©)) ; axiom

)

=

Christoph Matheja — 02245 — Program Verification 12

Y

Functions

= Writing specifications often requires a suitable mathematical vocabulary

* Functions are encoded through their

function f(x: T): TT function f(x: T): TT
requires P axiom {
ensures Q forall x: T ::
{E S P ==> f(x) == E && Q[result/f(x)]
}

= Challenges:

- Well-definedness conditions for partial functions
- Recursive functions may lead to non-termination = lemmas, patterns, limited functions

- May increase trusted code base

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

13

Heaps & Objects

Object based language with field Heap data structures pose four major

accesses x.f

Implicit garbage collection

challenges for sequential verification:
» Reasoning about aliasing

= Framing, especially for dynamic

Heaps map references and field data structures

names to values

type HeapType = Map<T>[(Ref, Field T), T]

» Writing specifications that preserve
iInformation hiding

Represented as a global variable = Data structures with complex

var Heap: HeapType

sharing

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 14

Permission-based separation logic

= Read or write access to memory location x. f requires permission acc(x.f)
- Refinement: fractional permissions to distinguish no, read, and write accesses

= Permissions can be transferred, but neither duplicated nor forged
- inhale P: obtain all permissions required by assertion P and assume all logical constraints

- exhale P: assert all logical constraints, check and remove all permissions required by
assertion P, and havoc any locations to which all permission is lost

* [ntuition: permission is held by methods, loop iterations, or predicate instances

= Separating conjunction P * Q acc(x.f) * acc(y.f) ==> x !=y
Frame rule
{P}sS{Q} where S does not assign to
{P*R}YS{Q*R} a variable that is free in

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

15

Predicates

= An unfold statement exchanges a

predicate list(this: Ref) { predicate instance for its body

acc(this.elem) && acc(this.next) &&

(this.next != null ==> list(this.next)) i i
} inhale list(x)

unfold list(x)
x.next := null

» Predicates enable specifying

= data structure permissions = Afold statement exchanges a
» data structure invariants predicate body for a predicate instance
= |ock invariants
= other resources (e.g. runtimes) inhale list(x)
unfold list(x)
= |so-recursive semantics x.next := null

fold list(x)

distinguishes between a predicate exhale 1list(x)

instance and its (recursive) body

(=]
—
=

Christoph Matheja — 02245 — Program Verification 16

Y

Abstraction

mathematical (1,14, 3.1, 12] 1,3, 12, 14} Sr’neej:thematlcal

sequence

(1 {14 [3 [1} 12 1]
| 14 | | 12

L1] [3 |
Data abstraction via predicate arguments Data abstraction via abstraction functions
predicate list(this: Ref, content: Seq[Int]) { function content(this: Ref): Seq[Int]
acc(this.elem) && acc(this.next) && {
(this.next == null ==> content == Seq[Int]()) && this.next == null
(this.next != null ==> 0 < |content| && ? Seq[Int]()
content[@] == this.elem && : Seq(this.elem) ++ content(this.next)
list(this.next, content[1..])) }
}
DTU

Christoph Matheja — 02245 — Program Verification 17

Y

Ghost code

= Code that is needed for verification,
but not for the execution of the code

Fold and unfold statements

Auxiliary variables and fields
Abstraction functions

Lemmas

Assertions for quantifier instantiations

Entire methods for internally traversing
data structures (addAtEnd)

= General rule for ghost code
The execution of ghost code must not
affect the behavior of regular code

= Examples

- Ghost variables must not occur in
conditions of regular conditionals and loops

- Ghost statements must not assign to
regular variables

- Ghost code must terminate

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 18

Intuition: permissions
are held by methods,
loop iterations,

Concurrency: Thread-local state

Thread-local state: al := new(bal) : :
parallel branches operate a2 := new(bal) predd’:ﬁateCIjnStanceS’
on disjoint memory a3 := new(bal) and threads

deposit(a2, 150)

deposit(al, 50) transfer(a2, a3, 100)

assert al.bal == a2.bal

exhale P1]..]
exhale P2[..]
havoc resl, res2
inhale Q1]..]
inhale Q2]..]

Parallel composition rule
{ P1L }S1{0Q1} { P2 } S2 { Q2 }
{ P1L *P23}sS1 || Ss2{Q1*Q2}

Extension: unstructured fork-join parallelism

(=]
—
=

Christoph Matheja — 02245 — Program Verification 19

Y

Concurrency: shared state and synchronization

Intuition: permissions are class Buffer {
held by methods, loop lock invariant acc(this.val)

iterations, predicate Product val;
instances, threads, and locks }

method produce(buf: Ref) method consume(buf: Ref)
{ assert acc(buf.islLock, wildcard) {
while(true) { inhale acc(buf.val) while(true) {
acquire buf acquire buf

if(buf.val != null) {
// consume buf.val

if(buf.val == null) {
buf.val := new()
} buf.val := null

release buf }

} exhale acc(buf.val) release buf

} v

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

20

Many potential project topics in our group — get in touch!

Open research topics at all levels
= Foundational program logics

= New frontend verifiers

= Tool automation

= Advanced specification features

= Specification inference

= Debugging tools

VIPER

Pxrust—k1

We offer student projects on all aspects
of program verification & formal methods

Specification and verification techniques
for new program features & properties

Theoretical foundations

New proof rules & program logics
Automation

Performance optimization

Case studies

IDE support

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 21

https://www.pm.inf.ethz.ch/education/student-projects.html

<END >

Thank you for attending the course!

Questions?

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

22

