02245 WRAP-UP & CONCLUSION

Christoph Matheja – 02245 – Program Verification

Course outline

Course Summary

Take five minutes to collect the main concepts that you have learned about in the course.

Christoph Matheja – 02245 – Program Verification

Course Verification Stack

- Techniques and tools for automated program verification
- Wishlist for each translation A ⇒ B
 - **Soundness:** If **B** is valid, then **A** is valid
 - **Completeness:** If **A** is valid, then **B** is valid
 - Efficiency: B's size is reasonable wrt. A
 - Explainability: We can reconstruct errors in
 A from errors in B

Developing verification methodologies

Foundational reasoning principles:

- Weakest preconditions
- Floyd-Hoare logic
- permission-based separation logic

Verifier architecture:

- Modern verification stack
- Intermediate languages
- Error reporting

General-purpose tools:

- First-order predicate logic
- SAT/SMT solvers
- Patterns, limited functions

Feedback for the first iteration of the course

https://forms.gle/58vES1Vz38qX6jVq5

Christoph Matheja – 02245 – Program Verification

Satisfiability Modulo Theories

FOL formula F	$\mathfrak{T} = (\mathfrak{A}, \beta) \vDash \mathbf{F}$ if and only if
$t_1 = t_2$	$\Im(t_1) = \Im(t_2)$
$R(t_1, \dots, t_n)$	$\bigl(\mathfrak{I}(t_1),\ldots,\mathfrak{I}(t_n)\bigr)\in R^{\mathfrak{A}}$
$\mathbf{G} \wedge \mathbf{H}$	$\mathfrak{T} \models \mathbf{G} \text{ and } \mathfrak{T} \models \mathbf{H}$
$G \Rightarrow H$	If $\mathfrak{I} \vDash G$, then $\mathfrak{I} \vDash H$
∃ <i>x</i> : T (G)	For some $v \in \mathbf{T}^{\mathfrak{A}}$, $\mathfrak{I}[x \coloneqq v] \vDash \mathbf{G}$
$\forall x: \mathbf{T} (\mathbf{G})$	For all $v \in \mathbf{T}^{\mathfrak{A}}$, $\mathfrak{I}[x := v] \models \mathbf{G}$

A Σ -formula F is satisfiable modulo the theory given by the set of axioms **AX** iff there exists a Σ -interpretation \Im such that

- $\Im \models F$, and
- $\Im \models G$ for every sentence G in AX.

- Signature Σ determines available symbols
- Σ-structure A assigns meaning to symbols
- Σ -assignment β assigns values to variables
- Decidability of SMT problem depends on
 - the underlying theories
 - the logic fragment (e.g. without quantifiers)

Verification conditions for passive programs

```
The triple { Pre } S { Post } is valid

if and only if

when program S is started in any state in Pre,

then S terminates in a state in Post

if and only if

Pre ==> WP(S, Post) valid
```


S	EWP(S, Q)	MWP(S, M)
assert R	R && Q	M U { R }
assume R	R => Q	$\{ P == P \; Q \; \mid \; Q \in M \}$
S1; S2	<i>EWP</i> (S1, <i>EWP</i> (S2, Q))	MWP(S1, MWP(S2, M))
S1 [] S2	<pre>(B == Q) ==> EWP(S1, B) && EWP(S2, B) where B is fresh</pre>	$MWP(S1, M) \cup MWP(S2, M)$

We obtain passive programs from loop-free programs by transforming them into dynamic single assignment form

Loops – Partial Correctness

// prior code assert I // havoc all loop targets assume I { **assume** b // encoding of S assert I assume false } [] { assume !b } // subsequent code

Proof obligations

- Goal: procedure-modular verification
- Challenge: framing local/global variables
- Procedure implementation satisfies procedure contract

valid: { P } S { Q } // encoding of S assert **O** Verify caller against contract consult declared contract assert $P[\bar{x}/\bar{a}]$ Call rule **var** e:T := a { P } method foo($\overline{x:T}$) returns ($\overline{y:T}$) { Q } havoc z $\{ P[\overline{x} / \overline{a}] \} \overline{z} := foo(\overline{a}) \{ Q[\overline{x} / \overline{a}] [\overline{z} / \overline{y}] \}$ assume $Q[\overline{x}/\overline{e}][\overline{y}/\overline{z}]$

account for arguments (assuming z does not appear in a)

DTU

x := 4

z := foo(x)

assume P

assert(y) + z == 20

Total correctness = Partial Correctness + Termination

A variant is an an expression V that decreases in every loop iteration / recursive call (for some well-founded ordering <).

while (i <= n) {
 var z: Int := n - i + 1
 assert z >= 0
 r := r + i
 i := i + 1
 assert n - i + 1 >= 0 && n - i + 1 < z
}</pre>

iterations / recursive calls

$$V_1 > V_2 > V_3 > V_4 > \dots > V_k$$

```
define V(m) (m)
method factorial(n: Int) returns (res: Int)
  requires 0 <= n</pre>
 // decreases V(m)
 var v: Int := V(n); assert v >= 0
  if (n == 0) {
    res := 1
  } else {
    assert V(n-1) < v
    res := factorial(n-1); res := n * res
```

Datatypes

- We encode custom data types into SMT by axiomatizing them
 - new type → uninterpreted sort
 - new operation \rightarrow uninterpreted function
 - new axiom → assert axiom

```
Background Predicate:
conjunction of all axioms
```

Verification condition:

BP ==> P ==> WP(S, Q) valid

```
domain Set {
  function empty(): Set
  function card(s: Set): Int
 // ...
  axiom card empty { card(empty()) == 0 }
 // ...
(declare-sort Set)
(declare-const empty Set)
(declare-fun card (Set) Int)
; ...
(assert (= (card empty) 0)) ; axiom
•
```

Functions

- Writing specifications often requires a suitable mathematical vocabulary
- Functions are encoded through their definitional axiom

```
function f(x: T): TT
  requires P
  ensures Q
{ E }
```

```
function f(x: T): TT
axiom {
   forall x: T ::
        P ==> f(x) == E && Q[result/f(x)]
}
```

- Challenges:
 - Well-definedness conditions for partial functions
 - Recursive functions may lead to non-termination → lemmas, patterns, limited functions
 - May increase trusted code base

Heaps & Objects

- Object based language with field accesses x.f
- Implicit garbage collection
- Heaps map references and field names to values

type HeapType = Map<T>[(Ref, Field T), T]

Represented as a global variable

var Heap: HeapType

Heap data structures pose four major challenges for sequential verification:

- Reasoning about aliasing
- Framing, especially for dynamic data structures
- Writing specifications that preserve information hiding
- Data structures with complex sharing

Permission-based separation logic

- Read or write access to memory location x.f requires permission acc(x.f)
 - Refinement: fractional permissions to distinguish no, read, and write accesses
- Permissions can be transferred, but neither duplicated nor forged
 - inhale P: obtain all permissions required by assertion P and assume all logical constraints
 - **exhale** P: assert all logical constraints, check and remove all permissions required by assertion P, and havoc any locations to which all permission is lost
- Intuition: permission is held by methods, loop iterations, or predicate instances
- Separating conjunction P * Q

Frame rule
{ P } S { Q }
{ P * R } S { Q * R }

acc(x.f) * acc(y.f) ==> x != y

where S does not assign to a variable that is free in R

Predicates

```
predicate list(this: Ref) {
   acc(this.elem) && acc(this.next) &&
   (this.next != null ==> list(this.next))
}
```

- Predicates enable specifying
 - data structure permissions
 - data structure invariants
 - Iock invariants
 - other resources (e.g. runtimes)
- Iso-recursive semantics distinguishes between a predicate instance and its (recursive) body

 An unfold statement exchanges a predicate instance for its body

```
inhale list(x)
unfold list(x)
x.next := null
```

 A fold statement exchanges a predicate body for a predicate instance

```
inhale list(x)
unfold list(x)
x.next := null
fold list(x)
exhale list(x)
```

Abstraction

Data abstraction via predicate arguments

Data abstraction via abstraction functions

```
function content(this: Ref): Seq[Int]
{
   this.next == null
    ? Seq[Int]()
   : Seq(this.elem) ++ content(this.next)
}
```

Ghost code

- Code that is needed for verification, but not for the execution of the code
 - Fold and unfold statements
 - Auxiliary variables and fields
 - Abstraction functions
 - Lemmas
 - Assertions for quantifier instantiations
 - Entire methods for internally traversing data structures (addAtEnd)

- General rule for ghost code
 The execution of ghost code must not affect the behavior of regular code
- Examples
 - Ghost variables must not occur in conditions of regular conditionals and loops
 - Ghost statements must not assign to regular variables
 - Ghost code must terminate

Extension: unstructured fork-join parallelism

Concurrency: shared state and synchronization

Many potential project topics in our group – get in touch!

Open research topics at all levels

- Foundational program logics
- New frontend verifiers
- Tool automation
- Advanced specification features
- Specification inference
- Debugging tools

P*rust-*i

- We offer <u>student projects</u> on all aspects of program verification & formal methods
- Specification and verification techniques for new program features & properties
- Theoretical foundations
- New proof rules & program logics
- Automation
- Performance optimization
- Case studies
- IDE support

< END >

Thank you for attending the course!

Questions?