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VERIFIER FRONTENDS
02245 – Module 11
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Tentative course outline
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Building a 
first verifierSMT solvers

Foundational 
Reasoning 
Principles

Loops and 
procedures

Advanced 
data types

Tactics &
challenges

Heaps and 
objects

Abstraction in 
specifications

Permission 
models

Concurrency
(Bonus)

Frontend
verifiers

Wrap-up & 
Conclusion
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Encoding of:
§ Program semantics

- Type system
- State model
- Language features (concurrency, etc.)

§ Proof obligations that are not checked by default
- Overflows, termination, well-formedness, etc.

§ Specifications and annotations

§ Verification logic and proof rules

§ Unverified and unverifiable code
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Source code verifier frontend

source code 
annotated with 
specifications

Loop-free programs

Proof obligations

Passive Programs

Frontend

SMT solver

Loops and procedures

Datatypes

Heaps
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Example: Go verification in Gobra

§ Go supports pointers to integers
§ Parameters can be assigned to
§ Locals get initialized by default
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requires acc(x) && acc(y)
ensures acc(x) && acc(y)
ensures *x == old(*y)
ensures *y == old(*x)
func swap(x *int, y *int) {

tmp := *x
*x = *y
*y = tmp

}

field val: Int

method swap(x: Ref, y: Ref)
requires acc(x.val) && acc(y.val)
ensures acc(x.val) && acc(y.val)
ensures x.val == old(y.val)
ensures y.val == old(x.val)

{  
var yLocal: Ref  // declare locals
var xLocal: Ref

xLocal := x      // copy parameters
yLocal := y

var tmp: Int // declare tmp
inhale tmp == 0

tmp := xLocal.val // tmp = *x
xLocal.val := yLocal.val // *x = *y
yLocal.val := tmp // *y = tmp

}
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Exposing the verification logic

§ Gobra’s specification and verification 
technique is very similar to Viper’s

§ Developers need to use permissions, 
declare predicates, use unfold and fold 
statements, etc.
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requires acc(x) && acc(y)
ensures acc(x) && acc(y)
ensures *x == old(*y)
ensures *y == old(*x)
func swap(x *int, y *int) {

tmp := *x
*x = *y
*y = tmp

}

§ The overhead for programmers is substantial (both amount and complexity of 
annotations)

§ Many existing verifiers take this approach because it enables modular verification 
of programs in mainstream languages, including concurrent and heap-
manipulating programs



6

§ How to model program semantics in a sound way?

§ What is the adequate abstraction level?
- How much verification logic is exposed? What is checked?
- What is the required expertise?
- Trade-off: automation vs. completeness

§ How to deal with code at the verification boundary?
- Libraries, external code
- Code with unsupported features

: expert verification tool that exposes most capabilities of Viper
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Source code verifiers – design questions
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Ownership types in Rust

§ Rust’s type system tracks ownership of memory locations è memory safety
- Ownership ≈ write permission
- Moving & borrowing ≈ transfer of fractional permissions
- Borrow checker ≈ bookkeeping for references with fractional permissions

§ Can we leverage this guarantee to simplify verification?
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fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;
*x = *y;
*y = tmp;

}

fn client()
{
let mut a = 17;
swap(&mut a, &mut a);

}

error[E0499]: cannot borrow `a` as 
mutable more than once at a time
--> .\swap.rs:11:26
|

11 |     swap(&mut a, &mut a);
|     ---- ------ ^^^^^^
second mutable borrow occurs here

error: aborting due to previous error

mutable reference
(borrow)
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§ Prusti hooks into the Rust compiler to 
generate a Viper program

§ Prusti generates a “core memory 
safety proof” completely automatically 
using the compiler’s type information
- Permissions & predicates
- Fold / unfold statements

§ Users can add functional correctness 
specifications, by using a slight 
extension of Rust expressions

Example: Rust verification in Prusti
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#[ensures(*x == old(*y) )]
#[ensures(*y == old(*x) )]
fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;
*x = *y;
*y = tmp;

}

§ The overhead for programmers is 
substantially reduced
- less complex annotations
- less annotations overall
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Comparison of annotation overhead: zip lists
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#![feature(box_patterns)]

use prusti_contracts::*;

struct Node {
elem: i32,
next: List,

}

enum List {
Empty,
More(Box<Node>),

}

impl List {
#[pure]
#[ensures(result >= 0)]
fn len(&self) -> usize {
match self {
List::Empty => 0,
List::More(box node) => 
1 + node.next.len(),

}
}

#[ensures(result.len() == 
self.len() + that.len())]

pub fn zip(&self, that: &List) -> List {
match self {
List::Empty => that.cloneList(),
List::More(box node) => {
let new_node = Box::new(Node {
elem: node.elem,
next: that.zip(&node.next),

});
List::More(new_node)

}
} 

}

field next: Ref
field elem: Int

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) && 
(this.next != null ==> list(this.next))

}

function len(this: Ref): Int
requires acc(list(this), wildcard)

{
unfolding acc(list(this), wildcard) in 

(this.next == null ? 0 : len(this.next) + 1)
}

method zip(this: Ref, that: Ref) 
returns (res: Ref)

requires acc(list(this), 1/2) && 
acc(list(that), 1/2)

ensures  acc(list(this), 1/2) && 
acc(list(that), 1/2)

ensures  list(res)
ensures  res != null
ensures  len(res) == len(this) + len(that)

{
unfold acc(list(this), 1/2)
if(this.next == null) {
res := cloneList(that)

} else {
res := new(*)
res.elem := this.elem
var rest: Ref
rest := zip(that, this.next)
res.next := rest
fold list(res)

}
fold acc(list(this), 1/2)

}

#[ensures(result.len() == self.len())]
pub fn cloneList(& self) -> List {
match self {
List::Empty => List::Empty,
List::More(box node) => {
let new_node = Box::new(Node {
elem: node.elem,
next: node.next.cloneList(),

});
List::More(new_node)

}
} 

}
}

method cloneList(this: Ref) returns (res: Ref)
requires acc(list(this), 1/2)
ensures  acc(list(this), 1/2) && list(res)
ensures  res != null
ensures  len(res) == len(this)

{
res := new(*)
unfold acc(list(this), 1/2)
if(this.next == null) {
res.next := null

} else {
var tmp: Ref
tmp := cloneList(this.next)
res.elem := this.elem
res.next := tmp

}
fold acc(list(this), 1/2)
fold list(res)

}

This is idealized 
code; it is not the 
generated code
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fn main() {

let mut x = Box::new(17);

let mut y = x;

*y = 42;

assert!(*y == 42);
}

Rust’s ownership system
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Ownership rules:
1. Every memory location is owned

by a unique variable.
2. A location is disposed of once its 

owner goes out of scope.
3. Ownership can be moved to 

another variable if the original 
owner is not used afterward.

ownership ≈ write permission

? ?
yx

? ?
yx

?? ?
yx

17?moved ?
yx

42

?moved drop
yx

17

moved

17

42

17

moves ≈ permission transfer
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error[E0382]: use of moved value: `x`
3 |     let mut y = x;
|                 - value moved here

4 |     *x = 42;
|     ^^^^^^^ value used here after move

Rust’s ownership system (II)
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fn main() {
let mut x = Box::new(17);
let mut y = x;
*x = 42;
assert!(*y == 42);

}

Ownership rules:
1. Every memory location is owned

by a unique variable.
2. A location is disposed of once its 

owner runs out of scope.
3. Ownership can be moved to 

another variable if the original 
owner is not used afterward.
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Rust’s ownership system (III)
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Ownership rules:
1. Every memory location is owned

by a unique variable.
2. A location is disposed of once its 

owner runs out of scope.
3. Ownership can be moved to 

another variable if the original 
owner is not used afterward.

fn foo(x: Box<i32>) -> Box<i32> {
if *x == i32::MIN {
x

} else {
Box::new(-1 * (*x))

}
}

fn create() -> Box<i32> { Box::new(-42) }

fn main() {
let mut x = create();
x = foo(x);
bar(x);
assert!(*x == 42); // FAILS

}

fn bar(x: Box<i32>) { /*...*/ }
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Viper encoding (simplified sketch)
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struct S { 
val: i32

}

method f(x: Ref, y: Ref)
requires S(x) && S(y)

{
unfold S(x) 
// ...  
fold S(x)

}

computed by simulating 
Rust’s type system

fn f(mut x: S, mut y: S) { 
x.val = y.val;

let z = g(&x.val);

assert!(z + x.val > 20);
}

predicate S(this: Ref) { 
acc(this.val) && i32(this.val)

}

#[pure]
fn g(a: &i32) -> i32 {
*a + 17

}

function g(a: Ref): Int
requires i32(a)

{
unfolding i32(a) in a.val + 17

}
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Mutable borrows
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Borrowing rules:
1. Ownership can be temporarily borrowed

using references:
§ unique mutable borrow

2. Owned locations cannot be disposed of 
or mutated while they are borrowed.

method swap(x: Ref, y: Ref)
requires acc(x.val) && acc(y.val)
ensures acc(x.val) && acc(y.val)

fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;
*x = *y;
*y = tmp;

}

fn main() {
let mut a = 19;
let mut b = 23;

let x = &mut a;
let y = &mut b;

swap(x, y);

a = 42; // FAILS

assert!(*x == 23 && b == 19);

swap(&mut a, &mut a); // FAILS
}

? ?
ba

19 23

19 23 ?
ba x

&m
y
&m

23 23 ?
ba x

&m19

è 02-mut-borrow.rs
è 03-mut-borrow.vpr
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Shared borrows
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Borrowing rules:
1. Ownership can be temporarily borrowed 

using references:
§ unique mutable borrow, xor
§ multiple read-only shared borrows

2. Owned locations cannot be disposed of 
or mutated while they are borrowed.

fn sum(p: &i32, q: &i32) -> i32 { p+q }
shared reference

method sum(p:Ref, q:Ref) returns (r:Ref)
requires acc(p.val, 1/2)

&& acc(q.val, 1/2)
ensures acc(p.val, 1/2)

&& acc(q.val, 1/2)
&& acc(res.val)

fn main() {
let mut x = 4;

let b = &x;

let c = &x;

// x = 7 // FAILS

x = sum(b, c);

}

4 ?
x b

&

4 ?
x b

&
c
&

?
x
8

?
x
4

è 04-shared-borrow.rs
è 05-shared-borrow.vpr
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§ Copy types

§ Generating fold and unfold statements for calls and loops

§ Generics and lifetimes

§ Reference-typed fields

§ Unsafe Rust code

§ …
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Many more encoding tasks (omitted)
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Annotated Rust Code
è 06-zip-lists.rs
(ca. 75 lines)

Handwritten Viper Model
è 07-zip-lists.vpr

(ca 55 lines)

Automated Encoding
è 08-gen-XYZ.vpr
(ca. 1’403 lines)
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Prusti Example: Zip Lists

è Z3 applies ca. 915’469 proof steps in total for verification
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Prusti Example: Verified Stack
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è 09-stack.rs
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§ How to model program semantics in a sound way?

§ What is the adequate abstraction level?
- How much verification logic is exposed? What is checked?
- What is the required expertise?
- Trade-off: automation vs. completeness

§ How to deal with code at the verification boundary?
- Libraries, external code
- Code with unsupported features

: lightweight verification tool targeting everyday programmers

: expert verification tool that exposes most capabilities of Viper
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Source code verifiers – design questions


