
1

VERIFIER FRONTENDS
02245 – Module 11

Christoph Matheja – 02245 – Program Verification

2

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Tactics &
challenges

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency
(Bonus)

Frontend
verifiers

Wrap-up &
Conclusion

3

Encoding of:
§ Program semantics

- Type system
- State model
- Language features (concurrency, etc.)

§ Proof obligations that are not checked by default
- Overflows, termination, well-formedness, etc.

§ Specifications and annotations

§ Verification logic and proof rules

§ Unverified and unverifiable code

Christoph Matheja – 02245 – Program Verification

Source code verifier frontend

source code
annotated with
specifications

Loop-free programs

Proof obligations

Passive Programs

Frontend

SMT solver

Loops and procedures

Datatypes

Heaps

4

Example: Go verification in Gobra

§ Go supports pointers to integers
§ Parameters can be assigned to
§ Locals get initialized by default

Christoph Matheja – 02245 – Program Verification

requires acc(x) && acc(y)
ensures acc(x) && acc(y)
ensures *x == old(*y)
ensures *y == old(*x)
func swap(x *int, y *int) {

tmp := *x
*x = *y
*y = tmp

}

field val: Int

method swap(x: Ref, y: Ref)
requires acc(x.val) && acc(y.val)
ensures acc(x.val) && acc(y.val)
ensures x.val == old(y.val)
ensures y.val == old(x.val)

{
var yLocal: Ref // declare locals
var xLocal: Ref

xLocal := x // copy parameters
yLocal := y

var tmp: Int // declare tmp
inhale tmp == 0

tmp := xLocal.val // tmp = *x
xLocal.val := yLocal.val // *x = *y
yLocal.val := tmp // *y = tmp

}

5

Exposing the verification logic

§ Gobra’s specification and verification
technique is very similar to Viper’s

§ Developers need to use permissions,
declare predicates, use unfold and fold
statements, etc.

Christoph Matheja – 02245 – Program Verification

requires acc(x) && acc(y)
ensures acc(x) && acc(y)
ensures *x == old(*y)
ensures *y == old(*x)
func swap(x *int, y *int) {

tmp := *x
*x = *y
*y = tmp

}

§ The overhead for programmers is substantial (both amount and complexity of
annotations)

§ Many existing verifiers take this approach because it enables modular verification
of programs in mainstream languages, including concurrent and heap-
manipulating programs

6

§ How to model program semantics in a sound way?

§ What is the adequate abstraction level?
- How much verification logic is exposed? What is checked?
- What is the required expertise?
- Trade-off: automation vs. completeness

§ How to deal with code at the verification boundary?
- Libraries, external code
- Code with unsupported features

: expert verification tool that exposes most capabilities of Viper

Christoph Matheja – 02245 – Program Verification

Source code verifiers – design questions

7

Ownership types in Rust

§ Rust’s type system tracks ownership of memory locations è memory safety
- Ownership ≈ write permission
- Moving & borrowing ≈ transfer of fractional permissions
- Borrow checker ≈ bookkeeping for references with fractional permissions

§ Can we leverage this guarantee to simplify verification?
Christoph Matheja – 02245 – Program Verification

fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;
*x = *y;
*y = tmp;

}

fn client()
{
let mut a = 17;
swap(&mut a, &mut a);

}

error[E0499]: cannot borrow `a` as
mutable more than once at a time
--> .\swap.rs:11:26
|

11 | swap(&mut a, &mut a);
| ---- ------ ^^^^^^
second mutable borrow occurs here

error: aborting due to previous error

mutable reference
(borrow)

8

§ Prusti hooks into the Rust compiler to
generate a Viper program

§ Prusti generates a “core memory
safety proof” completely automatically
using the compiler’s type information
- Permissions & predicates
- Fold / unfold statements

§ Users can add functional correctness
specifications, by using a slight
extension of Rust expressions

Example: Rust verification in Prusti

Christoph Matheja – 02245 – Program Verification

#[ensures(*x == old(*y))]
#[ensures(*y == old(*x))]
fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;
*x = *y;
*y = tmp;

}

§ The overhead for programmers is
substantially reduced
- less complex annotations
- less annotations overall

9

Comparison of annotation overhead: zip lists

Christoph Matheja – 02245 – Program Verification

#![feature(box_patterns)]

use prusti_contracts::*;

struct Node {
elem: i32,
next: List,

}

enum List {
Empty,
More(Box<Node>),

}

impl List {
#[pure]
#[ensures(result >= 0)]
fn len(&self) -> usize {
match self {
List::Empty => 0,
List::More(box node) =>
1 + node.next.len(),

}
}

#[ensures(result.len() ==
self.len() + that.len())]

pub fn zip(&self, that: &List) -> List {
match self {
List::Empty => that.cloneList(),
List::More(box node) => {
let new_node = Box::new(Node {
elem: node.elem,
next: that.zip(&node.next),

});
List::More(new_node)

}
}

}

field next: Ref
field elem: Int

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

function len(this: Ref): Int
requires acc(list(this), wildcard)

{
unfolding acc(list(this), wildcard) in

(this.next == null ? 0 : len(this.next) + 1)
}

method zip(this: Ref, that: Ref)
returns (res: Ref)

requires acc(list(this), 1/2) &&
acc(list(that), 1/2)

ensures acc(list(this), 1/2) &&
acc(list(that), 1/2)

ensures list(res)
ensures res != null
ensures len(res) == len(this) + len(that)

{
unfold acc(list(this), 1/2)
if(this.next == null) {
res := cloneList(that)

} else {
res := new(*)
res.elem := this.elem
var rest: Ref
rest := zip(that, this.next)
res.next := rest
fold list(res)

}
fold acc(list(this), 1/2)

}

#[ensures(result.len() == self.len())]
pub fn cloneList(& self) -> List {
match self {
List::Empty => List::Empty,
List::More(box node) => {
let new_node = Box::new(Node {
elem: node.elem,
next: node.next.cloneList(),

});
List::More(new_node)

}
}

}
}

method cloneList(this: Ref) returns (res: Ref)
requires acc(list(this), 1/2)
ensures acc(list(this), 1/2) && list(res)
ensures res != null
ensures len(res) == len(this)

{
res := new(*)
unfold acc(list(this), 1/2)
if(this.next == null) {
res.next := null

} else {
var tmp: Ref
tmp := cloneList(this.next)
res.elem := this.elem
res.next := tmp

}
fold acc(list(this), 1/2)
fold list(res)

}

This is idealized
code; it is not the
generated code

10

fn main() {

let mut x = Box::new(17);

let mut y = x;

*y = 42;

assert!(*y == 42);
}

Rust’s ownership system

Christoph Matheja – 02245 – Program Verification

Ownership rules:
1. Every memory location is owned

by a unique variable.
2. A location is disposed of once its

owner goes out of scope.
3. Ownership can be moved to

another variable if the original
owner is not used afterward.

ownership ≈ write permission

? ?
yx

? ?
yx

?? ?
yx

17?moved ?
yx

42

?moved drop
yx

17

moved

17

42

17

moves ≈ permission transfer

11

error[E0382]: use of moved value: `x`
3 | let mut y = x;
| - value moved here

4 | *x = 42;
| ^^^^^^^ value used here after move

Rust’s ownership system (II)

Christoph Matheja – 02245 – Program Verification

fn main() {
let mut x = Box::new(17);
let mut y = x;
*x = 42;
assert!(*y == 42);

}

Ownership rules:
1. Every memory location is owned

by a unique variable.
2. A location is disposed of once its

owner runs out of scope.
3. Ownership can be moved to

another variable if the original
owner is not used afterward.

12

Rust’s ownership system (III)

Christoph Matheja – 02245 – Program Verification

Ownership rules:
1. Every memory location is owned

by a unique variable.
2. A location is disposed of once its

owner runs out of scope.
3. Ownership can be moved to

another variable if the original
owner is not used afterward.

fn foo(x: Box<i32>) -> Box<i32> {
if *x == i32::MIN {
x

} else {
Box::new(-1 * (*x))

}
}

fn create() -> Box<i32> { Box::new(-42) }

fn main() {
let mut x = create();
x = foo(x);
bar(x);
assert!(*x == 42); // FAILS

}

fn bar(x: Box<i32>) { /*...*/ }

13

Viper encoding (simplified sketch)

Christoph Matheja – 02245 – Program Verification

struct S {
val: i32

}

method f(x: Ref, y: Ref)
requires S(x) && S(y)

{
unfold S(x)
// ...
fold S(x)

}

computed by simulating
Rust’s type system

fn f(mut x: S, mut y: S) {
x.val = y.val;

let z = g(&x.val);

assert!(z + x.val > 20);
}

predicate S(this: Ref) {
acc(this.val) && i32(this.val)

}

#[pure]
fn g(a: &i32) -> i32 {
*a + 17

}

function g(a: Ref): Int
requires i32(a)

{
unfolding i32(a) in a.val + 17

}

14

Mutable borrows

Christoph Matheja – 02245 – Program Verification

Borrowing rules:
1. Ownership can be temporarily borrowed

using references:
§ unique mutable borrow

2. Owned locations cannot be disposed of
or mutated while they are borrowed.

method swap(x: Ref, y: Ref)
requires acc(x.val) && acc(y.val)
ensures acc(x.val) && acc(y.val)

fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;
*x = *y;
*y = tmp;

}

fn main() {
let mut a = 19;
let mut b = 23;

let x = &mut a;
let y = &mut b;

swap(x, y);

a = 42; // FAILS

assert!(*x == 23 && b == 19);

swap(&mut a, &mut a); // FAILS
}

? ?
ba

19 23

19 23 ?
ba x

&m
y
&m

23 23 ?
ba x

&m19

è 02-mut-borrow.rs
è 03-mut-borrow.vpr

15

Shared borrows

Christoph Matheja – 02245 – Program Verification

Borrowing rules:
1. Ownership can be temporarily borrowed

using references:
§ unique mutable borrow, xor
§ multiple read-only shared borrows

2. Owned locations cannot be disposed of
or mutated while they are borrowed.

fn sum(p: &i32, q: &i32) -> i32 { p+q }
shared reference

method sum(p:Ref, q:Ref) returns (r:Ref)
requires acc(p.val, 1/2)

&& acc(q.val, 1/2)
ensures acc(p.val, 1/2)

&& acc(q.val, 1/2)
&& acc(res.val)

fn main() {
let mut x = 4;

let b = &x;

let c = &x;

// x = 7 // FAILS

x = sum(b, c);

}

4 ?
x b

&

4 ?
x b

&
c
&

?
x
8

?
x
4

è 04-shared-borrow.rs
è 05-shared-borrow.vpr

16

§ Copy types

§ Generating fold and unfold statements for calls and loops

§ Generics and lifetimes

§ Reference-typed fields

§ Unsafe Rust code

§ …

Christoph Matheja – 02245 – Program Verification

Many more encoding tasks (omitted)

17

Annotated Rust Code
è 06-zip-lists.rs
(ca. 75 lines)

Handwritten Viper Model
è 07-zip-lists.vpr

(ca 55 lines)

Automated Encoding
è 08-gen-XYZ.vpr
(ca. 1’403 lines)

Christoph Matheja – 02245 – Program Verification

Prusti Example: Zip Lists

è Z3 applies ca. 915’469 proof steps in total for verification

18

Prusti Example: Verified Stack

Christoph Matheja – 02245 – Program Verification

è 09-stack.rs

19

§ How to model program semantics in a sound way?

§ What is the adequate abstraction level?
- How much verification logic is exposed? What is checked?
- What is the required expertise?
- Trade-off: automation vs. completeness

§ How to deal with code at the verification boundary?
- Libraries, external code
- Code with unsupported features

: lightweight verification tool targeting everyday programmers

: expert verification tool that exposes most capabilities of Viper

Christoph Matheja – 02245 – Program Verification

Source code verifiers – design questions

