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Tentative course outline
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§ Who may hold permissions and how are they transferred?
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But first: the permission story
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Reasoning about concurrent programs – challenges 
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x.f := x.f + 1 x.f := x.f + 1

Data race: 2+ threads access same data,   
at least one mutates data

acquire x
x.f := 5 acquire x
release x x.f := 0
acquire x release x
y := 10 / x.f
release x

Reasoning about thread interference

acquire x acquire y
acquire y acquire x
… …
release x release x
release y release y

Deadlock

x.f := 0
acquire x acquire x
x.f := x.f + 1 x.f := x.f + 1
release x release x

acquire x
assert x.f == 2

Reasoning about thread cooperation
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Thread-modular verification
§ All verification techniques introduced so 

far are procedure-modular
- Reason about calls in terms of the callee’s

specification
- Verification of a method does not consider 

callers or implementation of callees

§ We will now present techniques that 
are also thread-modular
- Reason about a thread execution without 

knowing which other threads might run 
concurrently
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acquire x
x.f := 5 acquire x
release x x.f := 0
acquire x release x
y := 10 / x.f
release x

method create() returns (res: Ref)
ensures list(res)
ensures content(res) == Seq[Int]()

{
res := new(*)
res.next := null
fold list(res)

}

§ Both forms of modularity are crucial for verification to scale
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Concurrency

1. Concurrency with thread-local state

2. Shared state and synchronization
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a1 := new(bal)
a2 := new(bal)
a3 := new(bal)
deposit(a2, 150)

deposit(a1, 50) transfer(a2, a3, 100)

assert a1.bal == a2.bal

a1

a2
a3

a1

a2
a3

Thread-local state

Thread-local state: parallel branches operate on disjoint memory
è data races are not possible
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a1

a2
a3

a1

a2
a3
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Structured parallelism
§ Permissions and separating conjunction lead to a simple proof rule

§ All shared memory is on the heap
§ Separating conjunction prevents interference between the parallel branches

§ Programs with data races have an unsatisfiable precondition
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{ P1 } S1 { Q1 }    { P2 } S2 { Q2 }

{ P1 * P2 } S1 || S2 { Q1 * Q2 }

{ acc(x.f) } x.f := 7 { ... }    { acc(x.f) } y := x.f { ... }

{ acc(x.f) * acc(x.f) } x.f := 7 || y := x.f { ... }
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{ P1 } S1 { Q1 }     { P2 } S2 { Q2 }

{ P1 * P2 } S1 || S2 { Q1 * Q2 }

{ P1 * P1 * R } S1 || S2 { Q1 * Q2 * R }

Encoding structured parallelism
§ The proof rule employs the familiar permission transfer

§ We can encode this proof rule via exhale and inhale operations
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method left(…) returns (res1: T)
requires P1
ensures  Q1

{ // encoding of S1 }

exhale P1[…]
exhale P2[…]
havoc res1, res2
inhale Q1[…]
inhale Q2[…]

Encode left and right branch 
as methods with specifications Encode parallel composition 

like two “half method calls”
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Example: parallel list search
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method busy(courses: Ref, seminars: Ref, exams: Ref, today: Int) returns (res: Bool)
requires list(courses) && list(seminars) && list(exams)
ensures list(courses) && list(seminars) && list(exams)
ensures res == (today in content(courses) || 

today in content(seminars) || 
today in content(exams))

{

var leftRes: Bool
leftRes := contains(courses, today)

res := leftRes || rightRes
}

var rightRes: Bool
rightRes := contains(seminars, today)
var res2: Bool
res2 := contains(exams, today)
rightRes := rightRes || res2

è 00-busy.vpr

What have we proved when the Viper encoding verifies?
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Example: parallel read access
§ Since contains is side-effect free, concurrent executions should be allowed

§ Fractional permissions enable concurrent read access
§ but prevent concurrent reads and writes (and, thus, data races)
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method getStressed(exams: Ref, today: Int) returns (res: Bool)
requires list(exams)
ensures list(exams)
ensures res == (today in content(exams) || today + 1 in content(exams))

{

var leftRes: Bool
leftRes := contains(exams, today)

res := leftRes || rightRes
}

var rightRes: Bool
rightRes := contains(exams, today + 1)

è 01-getStressed.vpr
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Parallel branches with side-effects

§ In the encoding presented so far, old-expressions in the postconditions of the left 
and right branch are interpreted incorrectly

§ They should refer to the heap before the parallel composition (not the prestate of 
the enclosing method, which is unsound)
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method client(cell1: Ref, cell2: Ref, cell3: Ref, cell4: Ref)
requires acc(cell1.f) && acc(cell2.f) && acc(cell3.f) && acc(cell4.f) 

{
cell1.f := 1
cell2.f := 2

swap(cell1, cell2) swap(cell3, cell4)

assert cell1.f == 2
}

è 02-par-swap.vpr
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Labeled old-expressions
§ Viper allows the declaration of labels (at positions where statements may occur)

§ Labeled old-expressions are evaluated in the heap at the label

§ Encoding of parallel composition uses label to interpret the postconditions of the 
two branches
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label branch

// exhale precondition of left block
// exhale precondition of right block

// postcondition of left block
inhale acc(cell1.f) && acc(cell2.f)
inhale cell1.f == old[branch](cell2.f) && cell2.f == old[branch](cell1.f)
// analogous for postcondition of right block

è 03-par-swap.vpr



a. Implement and encode the method below; it increments all elements of an array
b. Verify memory safety
c. Specify and verify functional correctness

Christoph Matheja – 02245 – Program Verification

Exercise: structured parallelism

method incrementAll(a: Array)
requires …
ensures …

{
…

// sequential increment of
// left half of the array

…
}

// sequential increment of
// right half of the array

è 04-array-inc-all.vpr
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Parallel for-loops
§ Some languages and libraries provide parallel for-loops

§ We can treat such loops as generalized (unbounded) parallel composition

§ For this purpose, we specify the loop body with a pre- and postcondition (instead 
of a loop invariant)
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parallel for i: Int from 0 to len(a) 
{ update(a, i, lookup(a, i) + 1) }

body(0)   body(1)    …    body(len(a) – 1)

parallel for i: Int from 0 to len(a)
requires acc(loc(a, i).val)
ensures  acc(loc(a, i).val)
ensures lookup(a, i) == old(lookup(a, i)) + 1

{ update(a, i, lookup(a, i) + 1) }
old refers to pre-state 
of the loop
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Encoding of parallel for-loops
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parallel for i: Int from 0 to len(a)
requires acc(loc(a, i).val)
ensures  acc(loc(a, i).val)
ensures lookup(a, i) == 

old(lookup(a, i)) + 1
{ update(a, i, lookup(a, i) + 1) }

label l
exhale forall i: Int :: 0 <= i && i < len(a) 

==> acc(loc(a, i).val) 
inhale forall i: Int :: 0 <= i && i < len(a) 

==> acc(loc(a, i).val) 
inhale forall i: Int :: 0 <= i && i < len(a) 

==> lookup(a, i) == old[l](lookup(a, i)) + 1

Intuition for encoding of loop Encoding of loop

body(0)   …   body(len(a)–1)

exhale pre(0) && … && pre(len(a)-1)
inhale post(0) && … && post(len(a)-1)

method body(i: Int, a: Array) 
requires 0 <= i && i < len(a) 
requires acc(loc(a, i).val)
ensures  acc(loc(a, i).val)
ensures lookup(a, i) == 

old(lookup(a, i)) + 1
{ update(a, i, lookup(a, i) + 1) }

Check that loop 
body satisfies its 

specification

è 05-par-for-loop.vpr
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Unstructured parallelism (threads) 
§ Most programming languages offer unstructured parallelism via threads

§ Structured parallelism can easily be encoded via fork and join
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Statements
S ::= …

| x := fork m(!E)
| y := join x

t1 := fork left(…)
t2 := fork right(…)
x := join t1
y := join t2

x := left(…)   y := right(…)

§ Fork executes a method call in a new thread,
returning a thread object

§ Join waits for thread to terminate and returns 
the results of the forked method
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Challenges of encoding join-operations
§ Analogously to structured parallelism, a join inhales the postcondition of the 

forked method (for instance, to re-gain permissions passed to the forked thread)

§ Challenge: how to identify the postcondition to inhale?

§ We assume a type system that parameterizes type Thread with the method that 
has been forked 
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var t: Thread
if(b) { t := fork left(…)  } 
else { t := fork right(…) }
join t

method m(t: Thread) 
{
join t

}

Examples use a 
source language, 
not Viper

var t: Thread<left>
if(b) { t := fork left(…)  } 
else { t := fork right(…) }
join t

method m(t: Thread<left>) 
{
join t

}
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Challenges of encoding join-operations (cont’d)
§ The postcondition of a forked method will in general refer to method parameters

§ For a join, the corresponding fork is not statically known

§ Problem: we cannot determine statically how to substitute actual arguments for 
formal parameters when inhaling the postcondition during a join 
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method double(p: Int) returns (res: Int)
ensures res == p + p

var t: Thread<double>
if(b) { t := fork double(5) } 
else { t := fork double(7) }
y := join t
assert b ==> y == 10

method m(t: Thread<double>) 
{
y := join t
assert y == 10

}
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Simplified encoding of fork and join

§ Encoding of fork stores method arguments in fields of the thread object

§ Encoding of join uses these fields to inhale postcondition
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t := new(pArg)
t.pArg := 5
exhale P[p/5]

method m(p: T<a>) returns (r: T<b>)
requires P
ensures  Q

field pArg: T<a>
t := fork m(5)

y := join t inhale Q[p/t.pArg, r/y]
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Example: parallel list search
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method busy(courses: Ref, seminars: Ref, today: Int) returns (res: Bool)
requires list(courses) && list(seminars)
ensures list(courses) && list(seminars)
ensures res == (today in content(courses) || today in content(seminars))

{
var r1: Bool; var r2: Bool
var t1: Thread<contains>; var t2: Thread<contains>

t1 := fork contains(courses, today)
t2 := fork contains(seminars, today)

r1 := join t1
r2 := join t2

res := r1 || r2
}

è 06-fork-busy.vpr
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Repeated joins
§ Since a join inhales permissions, it is unsound to join the same thread twice

§ To prevent repeated joins of the same thread, the join operation requires and 
consumes a dedicated join-permission
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join t
join t
assert false

inhale acc(t.aArg.f)
inhale acc(t.aArg.f)
assert false

t := new(pArg)
t.pArg := 5
exhale A[p/5]
inhale acc(t.joinable)

field joinable: Ref 

t := fork m(5)

y := join t exhale acc(t.joinable)
inhale B[p/t.pArg, r/y]

è 07-repeated.vpr
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Reasoning about heap changes
§ Analogously to methods and parallel branches, threads may modify the heap

§ Therefore, the postcondition of the forked method may contain old-expressions, 
which can be encoded via labeled old-expressions

§ However, this encoding of join requires that the corresponding fork is statically 
known and in scope
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t := new(pArg)
t.pArg := x
label l
exhale A[p/5]
inhale acc(t.joinable)

exhale acc(t.joinable)
inhale … old[l](t.pArg.f) …

fork join
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Reasoning about heap changes (cont’d)
§ In general, the corresponding fork for a join is not statically known

§ In simple cases, we could evaluate 
old-expressions when a method is 
forked and store their values in the 
thread object (like method parameters)

§ This is difficult when old-expressions occur under conditionals, contain result 
variables, or evaluate to unbounded data structures

§ We simply omit such postconditions during a join (sound but incomplete)
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var t: Thread<double>
if(b) { t := fork double(5) } 
else { t := fork double(7) }
y := join t

method m(t: Thread<double>) 
{
y := join t

}

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)
ensures acc(a.f) && acc(b.f)
ensures a.f == old(b.f) && 

b.f == old(a.f)



a. Encode the method on the 
right; it computes the height of 
a binary tree (or -1 if the 
parameter is null)

b. Verify memory safety

c. Specify and verify functional 
correctness using the depth
function from the template
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Exercise: threads
method parDepth(this: Ref) returns (res: Int)
requires …
ensures …

{
if(this == null) { res := -1 }
else {
var r1: Int; var r2: Int
var t1: Thread<parDepth>
var t2: Thread<parDepth>

unfold tree(this)
t1 := fork parDepth(this.left)
t2 := fork parDepth(this.right)
r1 := join t1
r2 := join t2
res := max(r1, r2) + 1
fold tree(this)

}
}

è 08-par-tree-depth.vpr
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Concurrency

1. Concurrency with thread-local state

2. Shared state and synchronization

Christoph Matheja – 02245 – Program Verification
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Shared state
§ The solution presented so far supports 

concurrency with thread-local state

§ Threads exchange information upon 
fork and join, but cannot communicate 
or collaborate while they are running

§ Communication between threads is 
typically supported by shared state or 
message passing

§ We will focus on shared state, but 
message passing can also be 
supported using permissions
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§ Example: Producer-Consumer

§ Concurrent accesses to mutable 
shared state require synchronization 
to prevent data races and ensure 
correctness

§ We will focus on locks as a 
synchronization primitive 

producer shared
buffer

consumer
producer consumer
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Data race freedom
§ Concurrent accesses to mutable shared state may lead to data races

§ In verification, permissions can be used to prove the absence of data races 
(while permitting concurrent reading) 

§ In programs, synchronization prevents data races
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method produce(buf: Ref)
{
while(true) {
if(buf.val == null) {
buf.val := new()

}
}

}

method consume(buf: Ref)
{
while(true) {
if(buf.val != null) {
// consume buf.val
buf.val := null

}
}

}
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Synchronization via locks

§ Permission to access 
buf.val cannot be 
obtained via the 
preconditions (that would 
prevent concurrent 
executions)

§ Permissions transfer 
happens when acquiring 
or releasing a lock
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producer shared
buffer

consumer
producer consumer

method produce(buf: Ref)
{
while(true) {

if(buf.val == null) {
buf.val := new()

}

}
}

method consume(buf: Ref)
{
while(true) {

if(buf.val != null) {
// consume buf.val
buf.val := null

}

}
}

method produce(buf: Ref)
{
while(true) {
acquire buf
if(buf.val == null) {
buf.val := new()

}
release buf

}
}

method consume(buf: Ref)
{
while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null

}
release buf

}
}
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Lock invariants
§ A lock guards accesses to certain memory locations

§ We associate each lock with a lock invariant

§ Intuition: permissions are held by method executions, 
loop iterations, predicate instances, or locks
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class Buffer {
@GuardedBy("this") 
Product val;

}

Java provides annotations to 
document which locations are 
guarded by a lock

class Buffer {
lock invariant acc(this.val) 
Product val;

}

Permissions in the lock invariant 
express which locations are 
guarded by the lock
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Locks and permission transfer
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method produce(buf: Ref)
{
while(true) {
acquire buf
if(buf.val == null) {
buf.val := new()

}
release buf

}
}

method consume(buf: Ref)
{
while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null

}
release buf

}
}

class Buffer {
lock invariant acc(this.val) 
Product val;

}

buf

buf buf
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More on lock invariants
§ A lock invariant holds whenever the lock is not currently held by a thread

§ Lock invariants contain arbitrary self-framing assertions

§ Self-framingness is crucial for soundness
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acc(this.val) && 0 < this.val list(this) && 0 < length(this)

acc(this.val, 1/2) forall x: Ref :: x in s ==> acc(x.val) 

0 < this.val
Methods could violate the invariant 
without acquiring the lock
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Initializing locks
§ Before the first acquire, the lock needs to be initialized, to establish the lock 

invariant and to transfer the permissions to the lock

§ We introduce a ghost statement share that initializes the lock
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buf := new(val)
acquire buf // should be rejected
assert false

buf := new(val)
share buf
acquire buf // allowed
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Simplified encoding of locks
§ Locks are encoded as references

§ To track whether a lock has been initialized, we use the permission to a ghost 
field isLock

§ Some fractional permission for this field is required to acquire the lock 
- Permission is transferred to each thread that accesses the guarded state

§ The rule does not prevent sharing a lock twice
- Multiple inhales of wildcard are sound
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exhale Inv(x)
inhale acc(x.isLock, wildcard)

share x Inv(x) denotes the lock 
invariant
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Simplified encoding of locks (cont’d)
§ We model non-reentrant locks (repeated acquire leads to deadlock)

§ Therefore, each acquire obtains permissions from the lock

§ The rule for acquire does not prevent deadlock; extra proof obligations can be 
imposed to ensure that locks are acquired in an order (beyond this course)
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acquire x

release x

assert acc(x.isLock, wildcard)
inhale Inv(x)

exhale Inv(x)

wildcard ensures that the 
permission to acquire is 
freely duplicable

è 09-producer-consumer.vpr



Make our previous implementation of the 
Flyweight pattern thread-safe, that is, use 
locks to prevent data races
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Exercise: locking

cache val
factory flyweight

è 10-par-flyweight.vpr
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Client-side vs. server-side locking
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method inc(cell: Ref)
requires acc(cell.val)
ensures acc(cell.val)
ensures cell.val == old(cell.val) + 1

{
cell.val := cell.val + 1

}

acquire cell
cell.val := 0
inc(cell)
assert cell.val == 1
release cell

method inc(cell: Ref)
requires acc(cell.isLock, wildcard)
ensures // cannot refer to cell.val

{
acquire cell
cell.val := cell.val + 1
release cell

}

acquire cell
cell.val := 0
release cell
inc(cell)
acquire cell
assert cell.val == 1
release cell

Client-side locking Server-side locking
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Reasoning about server-side locking
§ With server-side locking, methods can 

typically not provide strong postconditions
over the shared data because the 
permission is not held in the post-state

§ In some cases, we can use ghost state to 
reason about server-side locking

§ In general, reasoning about server-side 
locking requires Owickie-Gries-style rely-
guarantee reasoning, which takes into 
account how all other threads may mutate 
the shared state (beyond the course)
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method inc(cell: Ref)
{
acquire cell
cell.val := cell.val + 1
release cell

}

cell := new(val)
cell.val := 0
share cell
t1 := fork inc(cell)
t2 := fork inc(cell)
join t1
join t2
acquire cell
assert cell.val == 2
release cell

è 11-owicki-gries.vpr



44

Coarse-grained locking
§ Coarse-grained locking uses one lock for the entire data structure
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head
The lock of the list 
guards accesses to the 
list and all nodes

method incAll(this: Ref)
requires acc(this.isLock, wildcard)

{
acquire this
if(this.head != null) {

incAllNodes(this.head)
}
release this

}

Simple implementation, which 
uses sequential incAllNodes
method, but limits concurrency



§ Fine-grained locking uses multiple locks for the data structure to enable 
concurrent accesses

§ Implement incAll using fine-grained locking
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Exercise: fine-grained locking

head
Each node has its own lock; 
multiple threads can traverse 
the list concurrently

è 12-fine-grained.vpr
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Fine-grained locking for complex invariants
§ Locking nodes in isolation is not possible if the lock invariants relates the states of 

multiple nodes (for instance, to express that the list is sorted)

§ Such examples require hand-over-hand locking
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head

next

head
Updating one elem field 
requires locking two nodes

define InvNode(this) (
acc(this.elem, 1/2) && acc(this.next) &&
(this.next != null ==> acc(this.next.elem, 1/2) &&

acc(this.next.isLock, wildcard) &&
this.elem <= this.next.elem)

)

è 13-hand-over-hand.vpr
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Summary: concurrency
§ We have seen that permissions enable verification for

- Structured parallelism and threads
- Data race freedom
- Share mutable state and locks

§ Many additional challenges exist

§ Many of these are active research areas
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Properties
deadlock freedom, 
starvation freedom, 

fairness,
linearizability,

etc.

Synchronization 
primitives
messages,

barriers,
etc.

Implementations
lock-free algorithms,

weak-memory 
algorithms,

etc.


