02245 — Module 10

CONCURRENCY

=
(=

Y

Christoph Matheja — 02245 — Program Verification

Tentative course outline

Foundational

Reasoning p—————\) SMT solvers =———————) Bundlng.a [r— =B G
.. first verifier procedures
Principles
Advanced I Tactics & I Heaps and I Abstraction in
data types challenges objects specifications
Permission Front-end
models verifiers

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

But first: the permission story

* Who may hold permissions and how are they transferred?

=
—
=

Christoph Matheja — 02245 — Program Verification

i

But first: the permission story

* Who may hold permissions and how are they transferred?

method foo(this: Ref) while (0 < i) predicate list(this: Ref)
requires acc(this.d) invariant acc(this.d) { acc(this.next) && ... }
ensures acc(this.d) {

{ this.d := this.d + i var x: Ref
this.d := 17 iz:=1-1 := new(*)
} } fold(list)

method executions loop iterations predicate instances

// trade permission
unfold list(x)
fold list(x)

// gain permission // give up permission

inhale acc(...) exhale acc(...)

=> Next: method executions may also run in parallel

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Reasoning about concurrent programs — challenges

acquire x
x.f :=5 acquire x
x.f 1= x.f+1 Xx.f 1= x.f+1 release x x.f := 0
acquire x release x
y := 10 / x.f
release x
Data race: 2+ threads access same data, Reasoning about thread interference
at least one mutates data
acquire Xx acquire y x.f := 0
acquire y acquire x acquire x acquire x
- - x.f 1= x.f+1 x.f 1= x.f+1
release X release x release x release x
release y release y acquire x
assert x.f ==
Deadlock Reasoning about thread cooperation

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Thread-modular verification

= All verification techniques introduced so method create() returns (res: Ref)
far are procedure-modular ensures list(res)
. ensures content(res) == Seq[Int]()
- Reason about calls in terms of the callee’s {

specification

- Verification of a method does not consider
callers or implementation of callees

= We will now present techniques that acquire x
x.f :=5
are also thread-modular A
- Reason about a thread execution without acquire x
knowing which other threads might run y :=10 / x.f
concurrently release Xx

» Both forms of modularity are crucial for verification to scale

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Concurrency

1. Concurrency with thread-local state

2. Shared state and synchronization

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Thread-local state

al := new(bal)
a2 := new(bal)
a3 := new(bal)
deposit(a2, 150)

deposit(al, 50) transfer(a2, a3, 100)

assert al.bal == a2.bal

Thread-local state: parallel branches operate on disjoint memory
=» data races are not possible

DTU
s Christoph Matheja — 02245 — Program Verification

P

Structured parallelism

= Permissions and separating conjunction lead to a simple proof rule

{PL}S1 {01} { } S2 { }
{ P1 * } S1 || Ss2 { Q1 * }

= All shared memory is on the heap
» Separating conjunction prevents interference between the parallel branches

* Programs with data races have an unsatisfiable precondition

{ acc(x.f) } x.f :=7 { ... } { ty :=x.f{ ...}
{ acc(x.f) * } x.f =7 ||y :=x.f{ ...}

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Encoding structured

parallelism

» The proof rule employs the familiar permission transfer

pas

b s2 {[o2]
2 {01 *Q

QL |*|Q2 I*| R |}

= We can encode this proof rule via exhale and inhale operations

method left(..) returns (resl: T) exhale P1]..]

requires P1
ensures Q1
{ // encoding of S1 }

exhale P2[..]
havoc resl, res2
inhale Q1]..]
inhale Q2]..]

Encode left and right branch
as methods with specifications Encode parallel composition

like two “half method calls”

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

10

Example: parallel list search 9 00-busy.vpr

method busy(courses: Ref, seminars: Ref, exams: Ref, today: Int) returns (res: Bool)
requires list(courses) && list(seminars) && list(exams)
ensures list(courses) && list(seminars) && list(exams)
ensures res == (today in content(courses) ||
today in content(seminars) ||
today in content(exams))

{
var rightRes: Bool
rightRes := contains(seminars, today)
var leftRes: Bool var res2: Bool
leftRes := contains(courses, today) res2 := contains(exams, today)

rightRes := rightRes || res2

res := leftRes rightRes

What have we proved when the Viper encoding verifies?

(=]
—
=

Christoph Matheja — 02245 — Program Verification 11

h

Example: parallel read access 9 ol-getStressed.vpr

= Since contains is side-effect free, concurrent executions should be allowed

method getStressed(exams: Ref, today: Int) returns (res: Bool)
requires list(exams)
ensures list(exams)

ensures res == (today in content(exams) || today + 1 in content(exams))
{
var leftRes: Bool var rightRes: Bool
leftRes := contains(exams, today) rightRes := contains(exams, today + 1)
res := leftRes || rightRes
}

» Fractional permissions enable concurrent read access
» but prevent concurrent reads and writes (and, thus, data races)

=

TU
Christoph Matheja — 02245 — Program Verification

Y

12

Parallel branches with side-effects = 02-par-swap.vpr

method client(celll: Ref, cell2: Ref, cell3: Ref, celld: Ref)
requires acc(celll.f) && acc(cell2.f) && acc(cell3.f) && acc(celld.f)

{
celll.f := 1
cell2.f := 2
swap(celll, cell2) “ swap(cell3, cell4d)

assert celll.f ==
} X
* |n the encoding presented so far, old-expressions in the postconditions of the left
and right branch are interpreted incorrectly

= They should refer to the heap before the parallel composition (not the prestate of
the enclosing method, which is unsound)

(=]
—
=

Christoph Matheja — 02245 — Program Verification 13

Y

Labeled old-expressions 9 03-par-swap.vpr

Viper allows the declaration of labels (at positions where statements may occur)
Labeled old-expressions are evaluated in the heap at the label

Encoding of parallel composition uses label to interpret the postconditions of the
two branches

label branch

// exhale precondition of Lleft block
// exhale precondition of right block

// postcondition of Lleft block

inhale acc(celll.f) && acc(cell2.f)

inhale celll.f == old[branch](cell2.f) && cell2.f == old[branch](celll.f)
// analogous for postcondition of right block

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 14

Exercise: structured parallelism 9 @4-array-inc-all.vpr

d.

Implement and encode the method below; it increments all elements of an array

b. Verify memory safety
c. Specify and verify functional correctness

method incrementAll(a: Array)

requires ..
ensures

{

// sequential increment of // sequential increment of
// left half of the array // right half of the array

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Solution: structured parallelism

method left(a: Array, mid: Int)
requires arraySeg(a, 0, mid)
requires 0 <= mid && mid <= len(a)
ensures arraySeg(a, 0, mid)
ensures forall j: Int :: 0 <= j & j < mid ==> lookup(a, j) == old(lookup(a, j)) + 1

var i: Int := ©
while(i < mid)
invariant arraySeg(a, 0, mid)
invariant 0 <= i && i <= mid
invariant forall j: Int :: j j i ==> lookup(a, j) == old(lookup(a, j)) + 1
invariant forall j: Int :: i ' j ' => lookup(a, j) == old(lookup(a, j))

update(a, i, lookup(a, 1i)+1)
i:=1+1

» Analogous for right branch
DTU

b a-d
o

Christoph Matheja — 02245 — Program Verification

Solution: structured parallelism (cont’'d)

method incrementAll(a: Array)
requires array(a)
ensures array(a)
ensures forall j: Int :: 0 <= j & j < len(a) ==> lookup(a, j) == old(lookup(a, j)) + 1

var mid: Int := len(a) / 2

label branch

// precondition of left block

exhale arraySeg(a, 0, mid) & & mid <= len(a)
// precondition of right block

exhale arraySeg(a, mid, len(a)) && 0 <= mid

// postcondition of left block

inhale arraySeg(a, 0, mid)

inhale forall j: Int :: @ <= j & j < mid ==> lookup(a, j) == old[branch](lookup(a, j)) + 1
// postcondition of right block

inhale arraySeg(a, mid, len(a))

inhale forall j: Int :: mid <= j & j < len(a) ==> lookup(a,j) == old[branch](lookup(a,j))+1

Christoph Matheja — 02245 — Program Verification

Parallel for-loops

» Some languages and libraries provide parallel for-loops

parallel for i: Int from 0 to len(a)
{ update(a, i, lookup(a, i) + 1) }

= We can treat such loops as generalized (unbounded) parallel composition

body (0) " body (1) Il . " body(len(a) - 1)

* For this purpose, we specify the loop body with a pre- and postcondition (instead
of a loop invariant)

parallel for i: Int from 0 to len(a)

requires acc(loc(a, i).val)

ensures acc(loc(a, i).val)

ensures lookup(a, i) == old(lookup(a, i)) + 1 old refers to pre-state
{ update(a, i, lookup(a, i) + 1) } of the loop

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

18

Encoding of parallel for-loops

parallel for i: Int from 0 to len(a)
requires acc(loc(a, i).val)
ensures acc(loc(a, i).val)
ensures lookup(a, i) ==
old(lookup(a, i)) + 1
{ update(a, i, lookup(a, i) + 1) }

Intuition for encoding of loop

body(@)|| m|| body(len(a)-1) 12

exhale pre(0) && .. & pre(len(a)-1) in

inhale post(0) && .. & post(len(a)-1)
in

method body(i: Int, a: Array)

exhale forall i:

= 05-par-for-loop.vpr

Check that loop
body satisfies its
specification

requires 0 <= 1 & i < len(a)
requires acc(loc(a, i).val)
ensures acc(loc(a, i).val)
ensures lookup(a, i) ==
old(lookup(a, i)) + 1
update(a, i, lookup(a, i) + 1) }

Encoding of loop

bel 1
Int :: 9 <=1 & i < len(a)
==> acc(loc(a, i).val)
hale forall i: Int :: 0 <=1 & i < len(a)
==> acc(loc(a, i).val)
hale forall i: Int :: 0 <=1 & i < len(a)
==> lookup(a, 1) old[1](lookup(a, i)) + 1

(=]
—
=

Y

Christoph Matheja —

02245 — Program Verification 19

Unstructured parallelism (threads)

» Most programming languages offer unstructured parallelism via threads

Statements = Fork executes a method call in a new thread,
S ..z returning a thread object

| x := fork m(E)

| y := join x = Join waits for thread to terminate and returns

the results of the forked method

» Structured parallelism can easily be encoded via fork and join

tl := fork left(..)
. t2 := fork right(..)
x := left(.) || y := right(.) X := join t1
y := join t2

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

20

Challenges of encoding join-operations

» Analogously to structured parallelism, a join inhales the postcondition of the
forked method (for instance, to re-gain permissions passed to the forked thread)

= Challenge: how to identify the postcondition to inhale?
var t: Thread method m(t: Thread)

if(b) { t := fork left(.) } { Examples use a
else { t := fork right(.) } join t source language,
join t } not Viper

* We assume a type system that parameterizes type Thread with the method that
has been forked

var t: Thread<left> method m(t: Thread<left>)
if(b) { t := fork left(..) } {

else { t := fork right(..) } join t

join t

Q- q.

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

21

Challenges of encoding join-operations (cont'd)

* The postcondition of a forked method will in general refer to method parameters

method double(p: Int) returns (res: Int)
ensures res == p + p

= For ajoin, the corresponding fork is not statically known

var t: Thread<double> method m(t: Thread<double>)
if(b) { t := fork double(5) } {

else { t := fork double(7) } y := join t

y := join t assert y == 10

assert b ==> y == 10 }

= Problem: we cannot determine statically how to substitute actual arguments for
formal parameters when inhaling the postcondition during a join

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

22

Simplified encoding of fork and join

method m(p: T<a>) returns (r: T)
requires P
ensures Q

* Encoding of fork stores method arguments in fields of the thread object

field pArg: T<a>
t := fork m(5)

t := new(pArg)
t.pArg := 5
exhale P[p/5]

* Encoding of join uses these fields to inhale postcondition

y := join t inhale Q[p/t.pArg, r/y]

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

23

Example: parallel list search

= 06-fork-busy.vpr

method busy(courses: Ref, seminars: Ref, today: Int) returns (res: Bool)
requires list(courses) && list(seminars)

ensures

ensures res ==

list(courses) && list(seminars)
(today in content(courses) || today in content(seminars))

var rl: Bool; var r2: Bool
t1l: Thread<contains>; var t2: Thread<contains>

var

tl :
t2 :

rl :
r2 :

res

fork contains(courses, today)
fork contains(seminars, today)

join t1
join t2

rl || r2

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

24

Repeated joins = 07-repeated.vpr

» Since a join inhales permissions, it is unsound to join the same thread twice

join t inhale acc(t.aArg.f)
join t inhale acc(t.aArg.f)

assert false assert false Q

= To prevent repeated joins of the same thread, the join operation requires and

consumes a dedicated join-permission T

t := fork m(5) t := new(pArg)
t.pArg := 5
exhale A[p/5]
inhale acc(t.joinable)

join t exhale acc(t.joinable)
inhale B[p/t.pArg, r/y]

<
0

(=]
—
=

Christoph Matheja — 02245 — Program Verification 25

Y

Reasoning about heap changes

Analogously to methods and parallel branches, threads may modify the heap

Therefore, the postcondition of the forked method may contain old-expressions,
which can be encoded via labeled old-expressions

fork t := new(pArg) exhale acc(t.joinable) join
t.pArg := X inhale .. old[1](t.pArg.f) ..
label 1

exhale A[p/5]
inhale acc(t.joinable)

However, this encoding of join requires that the corresponding fork is statically
known and in scope

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

26

Reasoning about heap changes (cont’'d)

* |n general, the corresponding fork for a join is not statically known

var t: Thread<double> method m(t: Thread<double>)
if(b) { t := fork double(5) } {
else { t := fork double(7) } y := join t
y := join t }
* |n simple cases, we could evaluate method swap(a: Ref, b: Ref)
old-expressions when a method is requires acc(a.f) & acc(b.f)
. _ ensures acc(a.f) && acc(b.f)
forked and store their values in the ensures a.f == old(b.f) &&
thread object (like method parameters) b.f == old(a.f)

= This is difficult when old-expressions occur under conditionals, contain result
variables, or evaluate to unbounded data structures

= We simply omit such postconditions during a join (sound but incomplete)

=

TU
Christoph Matheja — 02245 — Program Verification

Y

27

Exercise: threads

d.

Encode the method on the
right; it computes the height of
a binary tree (or -1 if the
parameter is null)

Verify memory safety

Specify and verify functional
correctness using the depth

function from the template

=>» 08-par-tree-depth.vpr

method parDepth(this: Ref) returns (res: Int)

requires ..
ensures

if(this == null) { res := -1 }
else {

var rl: Int; var r2: Int

var tl: Thread<parDepth>

var t2: Thread<parDepth>

unfold tree(this)

tl := fork parDepth(this.left)
t2 := fork parDepth(this.right)
rl := join t1l

r2 := join t2

res := max(rl, r2) + 1

fold tree(this)

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Solution: threads

method parDepth(this: Ref) returns (res: Int) // analogous for:
requires this != null ==> tree(this) // t2 := fork parDepth(this.left)
ensures this != null ==> tree(this)
ensures res == depth(this) // rl := join t1
exhale acc(tl.joinable)
if(this == null) { res := -1 } inhale tl1l.thisArg != null ==>
else { tree(tl.thisArg)
var rl: Int; var r2: Int inhale rl1 == depth(tl.thisArg)
var tl: Ref; var t2: Ref
// r2 := join t2
unfold tree(this) exhale acc(t2.joinable)
inhale t2.thisArg != null ==>
// tl := fork parDepth(this.left) tree(t2.thisArg)
tl := new(thisArg) inhale r2 == depth(t2.thisArg)
tl.thisArg := this.left
label f1 // not used here res := max(rl, r2) + 1
exhale this.left != null ==> fold tree(this)
tree(this.left)
inhale acc(tl.joinable)

Christoph Matheja — 02245 — Program Verification

Concurrency

1. Concurrency with thread-local state

2. Shared state and synchronization

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

30

Shared state

The solution presented so far supports
concurrency with thread-local state

Threads exchange information upon
fork and join, but cannot communicate
or collaborate while they are running

Communication between threads is
typically supported by shared state or
message passing

We will focus on shared state, but
message passing can also be
supported using permissions

= Example: Producer-Consumer

producer

producer

—

shared
buffer

< consumer
consumer

Concurrent accesses to mutable
shared state require synchronization
to prevent data races and ensure
correctness

We will focus on locks as a
synchronization primitive

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

31

Data race freedom

= Concurrent accesses to mutable shared state may lead to data races

method produce(buf: Ref) method consume(buf: Ref)
{ {
while(true) { while(true) {
if(buf.val == null) { if(buf.val != null) {
buf.val := new() // consume buf.val
} buf.val := null
} }
} }
}

» |n verification, permissions can be used to prove the absence of data races
(while permitting concurrent reading)

» |n programs, synchronization prevents data races

=

Christoph Matheja — 02245 — Program Verification

Y

32

Synchronization via locks

producer >

producer

shared < consumer
buffer consumer

method produce(buf: Ref)

{

}

while(true) {

}

acquire buf
if(buf.val == null) {
buf.val := new()

}

release buf

method consume(buf: Ref)
{
while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null
}
release buf
}
}

Permission to access
buf.val cannot be
obtained via the
preconditions (that would
prevent concurrent
executions)

Permissions transfer
happens when acquiring
or releasing a lock

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

33

Lock invariants

= A lock guards accesses to certain memory locations

class Buffer { . .
@GuardedBy("this") Java provides annotations to

Product val: document which locations are
} guarded by a lock

= \We associate each lock with a lock invariant

SIEES BIArEr o Permissions in the lock invariant
lock invariant acc(this.val)

Product val: express which locations are
} guarded by the lock

* [ntuition: permissions are held by method executions,
loop iterations, predicate instances, or locks

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

34

Locks and permission transfer

class Buffer {
lock invariant acc(this.val)
Product val;

}
method produce(buf: Ref) method consume(buf: Ref)
{ {
while(true) { while(true) {
acquire buf acquire buf

if(buf.val == null) {
buf.val := new()
} buf.val := null
release buf }
} release buf

} }

if(buf.val != null) {
// consume buf.val

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

35

More on lock invariants
* A lock invariant holds whenever the lock is not currently held by a thread
» Lock invariants contain arbitrary self-framing assertions

acc(this.val) & © < this.val list(this) && 0 < length(this)

acc(this.val, 1/2) forall x: Ref :: x in s ==> acc(x.val)

» Self-framingness is crucial for soundness

Methods could violate the invariant

@ < this.val without acquiring the lock

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

36

Initializing locks

= Before the first acquire, the lock needs to be initialized, to establish the lock
invariant and to transfer the permissions to the lock
buf := new(val)

acquire buf // should be rejected
assert false

= We introduce a ghost statement share that initializes the lock

buf := new(val)
share buf
acquire buf // allowed

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

37

Simplified encoding of locks

= | ocks are encoded as references

= To track whether a lock has been initialized, we use the permission to a ghost
field isLock

exhale Inv(x) Inv(x) denotes the lock

share x)
inhale acc(x.islLock, wildcard) iInvariant

= Some fractional permission for this field is required to acquire the lock
- Permission is transferred to each thread that accesses the guarded state

= The rule does not prevent sharing a lock twice
- Multiple inhales of wildcard are sound

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

38

Simplified encoding of locks (cont’d) 9 09-producer-consumer.vpr

* We model non-reentrant locks (repeated acquire leads to deadlock)

» Therefore, each acquire obtains permissions from the lock

wildcard ensures that the
permission to acquire is
freely duplicable

assert acc(x.islLock, wildcard)

acquire x
B inhale Inv(x)

release x exhale Inv(x)

* The rule for acquire does not prevent deadlock; extra proof obligations can be
imposed to ensure that locks are acquired in an order (beyond this course)

(=]
—
=

Christoph Matheja — 02245 — Program Verification 39

Y

Exercise: locking

Make our previous implementation of the
Flyweight pattern thread-safe, that is, use
locks to prevent data races

= 10-par-flyweight.vpr

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Solution: locking

Make our previous implementation of the
Flyweight pattern thread-safe, that is, use
locks to prevent data races

// the lock invariant is identical
// to the former factory predicate

define Inv(this) (
acc(this.cache) &&
(this.cache != null ==>

acc(this.cache.val, wildcard))

method get(this: Ref) returns (f: Ref)
requires acc(this.islock, wildcard)

ensures acc(f.val, wildcard)
{
acquire(this)
if(this.cache == null) {
f := new(val)
this.cache := f
}
f := this.cache
release(this)

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Client-side vs. server-side locking

Client-side locking Server-side locking
method inc(cell: Ref) method inc(cell: Ref)
requires acc(cell.val) requires acc(cell.islLock, wildcard)
ensures acc(cell.val) ensures // cannot refer to cell.val
ensures cell.val == old(cell.val) + 1 {
{ acquire cell
cell.val := cell.val + 1 cell.val := cell.val + 1
} release cell

acquire cell
cell.val := ©
inc(cell)

assert cell.val == 1
release cell

O

}

acquire cell
cell.val := ©
release cell
inc(cell)

acquire cell
assert cell.val == Q

release cell

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

42

Reasoning about server-side locking

With server-side locking, methods can
typically not provide strong postconditions
over the shared data because the
permission is not held in the post-state

In some cases, we can use ghost state to
reason about server-side locking

In general, reasoning about server-side
locking requires Owickie-Gries-style rely-
guarantee reasoning, which takes into
account how all other threads may mutate
the shared state (beyond the course)

method inc(cell: Ref)

{
acquire cell
cell.val := cell.val + 1
release cell

}

cell := new(val)
cell.val := 0

share cell

tl := fork inc(cell)
t2 := fork inc(cell)
join t1

join t2

acquire cell

assert cell.val == (:::)
release cell

= 11-owicki-gries.vpr

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

43

Coarse-grained locking

» Coarse-grained locking uses one lock for the entire data structure

method incAll(this: Ref)
requires acc(this.islLock, wildcard)

{
acquire this
if(this.head != null) {
incAllNodes(this.head)
}
release this
}

The lock of the list
guards accesses to the
list and all nodes

Simple implementation, which
uses sequential incAl1Nodes
method, but limits concurrency

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

44

Exercise: fine-grained locking > 12-fine-grained.vpr

* Fine-grained locking uses multiple locks for the data structure to enable
concurrent accesses

Each node has its own lock;
multiple threads can traverse
the list concurrently

* |[mplement incAll using fine-grained locking

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Solution: fine-grained locking

* |Implement incAll using fine-grained

locking

define InvList(this) (
acc(this.head) &&
(this.head != null ==>
acc(this.head.islLock, wildcard))

)

define InvNode(this) (
acc(this.elem) && acc(this.next) &&
(this.next != null ==>
acc(this.next.islLock, wildcard))

method incAll(this: Ref)
requires acc(this.islLock, wildcard)

{
acquire this
var curr: Ref := this.head
while(curr != null)
invariant curr != null ==>
acc(curr.islLock, wildcard)

acquireNode(curr)
curr.elem := curr.elem + 1
var n: Ref := curr.next
releaseNode(curr)

curr :=n

}

release this

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Fine-grained locking for complex invariants = 13-hand-over-hand.vpr

* Locking nodes in isolation is not possible if the lock invariants relates the states of
multiple nodes (for instance, to express that the list is sorted)

= Such examples require hand-over-hand locking

Updating one elem field

ne

xt

i

H requires locking two nodes

define InvNode(this) (
acc(this.elem, 1/2) && acc(this.next) &&
(this.next != null ==> acc(this.next.elem, 1/2) &&

acc(this.next.islLock, wildcard) &&
this.elem <= this.next.elem)

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

47

Summary: concurrency

= \We have seen that permissions enable verification for
- Structured parallelism and threads
- Data race freedom
- Share mutable state and locks

» Many additional challenges exist

Properties Implementations
deadlock freedom, lock-free algorithms,
starvation freedom, weak-memory

fairness, algorithms,
linearizability, etc.
etc.

= Many of these are active research areas

Synchronization
primitives
messages,

barriers,
etc.

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

48

