
1

PERMISSION MODELS
02245 – Module 9

Christoph Matheja – 02245 – Program Verification

2

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Tactics &
challenges

Heaps and
objects

Abstraction in
specifications

Permission
models Concurrency Front-end

verifiers

3

Advanced permission models

1. Fractional permissions

2. Quantified permissions

Christoph Matheja – 02245 – Program Verification

4

Framing revisited
§ Methods that only read a data

structure must specify that each
abstraction remains unchanged

§ Adding an abstraction requires
changes to existing specifications
(non-modular)

§ Possible solution: specify that
predicate version remains
unchanged (not possible in Viper)

§ We introduce a more expressive
solution in the following

Christoph Matheja – 02245 – Program Verification

method cloneList(this: Ref) returns (res: Ref)
requires list(this) // read only
ensures list(this) && list(res)
ensures content(this) == old(content(this))

{
res := new(*)
unfold list(this)
if(this.next == null) {
res.next := null

} else {
var tmp: Ref
tmp := cloneList(this.next)
res.elem := this.elem
res.next := tmp

}
fold list(this)
fold list(res)

}

è 00-clone.vpr

5

Fractional permissions
§ To distinguish read and write access, permissions can be split and re-combined

§ A permission amount p is a rational number in [0;1]

§ Viper syntax
- Permissions are fractions n/d
- write for n/d and none for 0/1
- acc(E.f) is a shortcut for acc(E.f, write)
- P(E) is a shortcut for acc(P(E), write)

§ Field read requires a non-zero permission

§ Field write requires full (write) permission

Christoph Matheja – 02245 – Program Verification

Predicates (or assertions)
P ::= ...

| acc(E.f, p)
| acc(P(!E), p)

inhale acc(x.f, 1/2)
x.f := v

inhale acc(x.f, 1/2)
v := x.f

6

Manipulating fractional permissions
§ Separating conjunction sums up permissions of the conjuncts

Christoph Matheja – 02245 – Program Verification

acc(x.f, 1/2) && acc(x.f, 1/2) is equivalent to acc(x.f, 1/1)

§ inhale adds permissions

§ exhale subtracts permissions and
havocs only when all permission to
a location or predicate instance is
removed

§ Values are framed as long as some
permission is held

method cloneList(this: Ref) returns (res: Ref)
requires acc(list(this), 1/2) // read only
ensures acc(list(this), 1/2) && list(res)

{ … }

method frameList(this: Ref) returns (l: Ref)
requires list(this)

{
var tmp1: Seq[Int]
tmp1 := content(this)
l := cloneList(this) // no havoc of version
assert tmp1 == content(this)

}

è 01-clone.vpr

7

Predicates and fractional permissions
§ Predicates may contain fractional

permissions, e.g. to permit sharing

§ Field locations with more than full
permission are infeasible (magic)

§ Predicate instances with more than
full permission are feasible (no magic)

§ Unfold and fold multiply the fraction of
the predicate with the fractions in the
predicate body

Christoph Matheja – 02245 – Program Verification

predicate readCell(this: Ref) {
acc(this.cell) && acc(this.cell.val, 1/2)

}

predicate P(this: Ref) {
acc(this.val, 1/2)

}

inhale acc(x.val)
fold P(x)
fold P(x)
exhale P(x) && P(x) // not false

inhale acc(readCell(x), 1/4)
unfold acc(readCell(x), 1/4)
exhale acc(x.cell.val, 1/8)

è 02-clone.vpr

a. Implement a method that creates a new list zipping together two lists (see diagram):
method zip(this: Ref, that: Ref) returns (res: Ref)

b. Write a specification such that the method verifies and returns all permissions it holds; use full
permissions only.

c. Adjust your specification and implementation to use fractional permissions where possible.
d. Can you verify a client that zips a list with itself?

§ Hints:
- Do not write a functional specification (yet)
- You can use method cloneList for the case that one of the two lists is empty.
- You may swap the arguments for the recursive call.

Christoph Matheja – 02245 – Program Verification

Exercise: fractional permissions è 03-list-zip.vpr

that

this
res

10

Heap-dependent functions
§ Heap-dependent functions may

only read the heap

§ Hence, an arbitrarily small
fraction would be sufficient

§ Problem: we don’t know how
often permissions are split

§ Possible solution: use wildcard
to avoid concrete fraction

Christoph Matheja – 02245 – Program Verification

function length(this: Ref): Int
requires acc(list(this), wildcard)

{
unfolding acc(list(this), wildcard) in
(this.next == null ? 0 : length(this.next) + 1)

}

function length(this: Ref): Int
requires list(this)

{
unfolding list(this) in
(this.next == null ? 0 : length(this.next) + 1)

}

inhale acc(list(this), 1/2)
x := length(this)

11

assert Mask[x,f] > 0.0
v := Heap[x,f]

assert Mask[x,f] == 1.0
Heap[x,f] := E

Adjusted encoding: permissions and field access
§ Permissions are tracked in a global permission mask

§ Convention: Mask[null, f] == 0.0 for all fields f

§ Field access

- Field access requires permission!

Christoph Matheja – 02245 – Program Verification

type MaskType = Map<T>[(Ref, Field T), Real]
var Mask: MaskType

v := x.f x.f := E

12

Mask[[[E]],f] := Mask[[[E]],f] + p
assume Mask[[[E]],f] <= 1.0

Adjusted encoding: inhale
§ inhale A means:

- obtain all permissions required by assertion A
- assume all logical constraints

§ Encoding is defined recursively over the structure of A

§ The encoding also asserts that E and p are well-defined (omitted here)

Christoph Matheja – 02245 – Program Verification

inhale acc(E.f, p)

inhale A && B [[inhale A]]; [[inhale B]]

Reaching more than full permission
for a field location goes to magic

Separating conjunction:
add sum of permissions

inhale acc(P(E), p) Mask[null,PField([[E]])] := Mask[null,PField([[E]])] + p

13

Adjusted encoding: exhale
§ exhale A means:

- assert all logical constraints
- check and remove all permissions required by assertion A
- havoc any locations to which all permission is lost

§ Encoding is defined recursively over the structure of A

Christoph Matheja – 02245 – Program Verification

exhale acc(E.f, p)
assert Mask[[[E]],f] >= p
Mask[[[E]],f] := Mask[[[E]],f] - p

exhale A

var oldMask: MaskType
var newHeap: HeapType
oldMask := Mask
[[exhale A]]
assume forall y,g :: Mask[y,g] > 0.0 ==> newHeap[y,g] == Heap[y,g]
Heap := newHeap // effectively havocs all locations to which all

permission was lost

14

Sharing in data structures
§ Full permissions can describe tree-shaped data structures only

§ Fractional permissions allow sharing

§ Sharing is used in many data structures
- Examples: doubly-linked lists, global data, caches, graphs, ...

Christoph Matheja – 02245 – Program Verification

predicate sharedCell(this: Ref) {
acc(this.cell) && acc(this.cell.val, 1/2)

}

predicate exclusiveCell(this: Ref) {
acc(this.cell) && acc(this.cell.val)

}

cell

val

cell

val

cell

val

cell

15

§ Example: text segments

Case study: binary reference counting
§ Binary reference counting optimizes

code that uses immutable data

§ Keep track whether the data is shared

§ Updates on shared data perform a
copy (“copy on write”)

§ Updates on unshared data perform a
destructive update

§ Once shared, the data does not go
back to unshared (unlike with full
reference counting)

Christoph Matheja – 02245 – Program Verification

true
“text”

0
data

4

1
data

2

true
“text” 0

data

4

0
data

2false
“ok”

è 04-rcbox.vpr

16

The Perm type
§ The demo uses a ghost field of type Perm

§ Values of type Perm include:
- constants none, write, wildcard, and fractions
- expressions, e.g., write – x.frac or 2*write

§ Perm is typically used for ghost variables
- Parameterize methods that require read

permission
- Perform permission accounting when

permissions are distributed and later re-collected

§ Type Perm is encoded as a real

Christoph Matheja – 02245 – Program Verification

field frac: Perm

method cloneList(this: Ref, p: Perm)
returns (res: Ref)

requires acc(list(this), p)
ensures acc(list(this), p) &&

list(res)

§ Implement a simplified version of the Flyweight pattern
with the following properties:

§ A flyweight object has a single field val.

§ The factory manages only one object.

§ The factory’s get method returns a flyweight object and
provides read access to its val field.

§ It obtains this flyweight object from a cache, and creates
it if the cache is empty.

Christoph Matheja – 02245 – Program Verification

Exercise: sharing

cache val
factory flyweight

è 05-flyweight.vpr

19

§ Example: doubly-linked list

Sharing in mutable data structures
§ Previously: immutable shared objects

§ To specify mutable data structures
with sharing, we arrange fractional
permissions such that they can be
combined to obtain a full permission

Christoph Matheja – 02245 – Program Verification

predicate nodes(this: Ref) {
acc(this.next) && acc(this.prev, 1/2) &&
(this.next != null ==>
acc(this.next.prev, 1/2) &&
this.next.prev == this &&
nodes(this.next)

)
}

predicate dlist(this: Ref) {
acc(this.head) &&
(this.head != null ==>
acc(this.head.prev, 1/2) &&
this.head.prev == null &&
nodes(this.head)

)
}

null
null

20

Advanced permission models

1. Fractional permissions

2. Quantified permissions

Christoph Matheja – 02245 – Program Verification

21

Limitations of recursive predicates
§ Recursive predicates allow one to specify unbounded data structures

- Traversals happen in the order in which the predicate needs to be unfolded

§ Predicates are not ideal for many other use cases

Christoph Matheja – 02245 – Program Verification

Iterative traversals

Arbitrary cyclic data structuresRandom-access data structures

Other traversal orders

22

Quantified permissions
§ To denote permission to an unbounded set of locations without prescribing a

traversal order, we allow permissions and predicates in universal quantifiers

§ Universal quantifiers can be thought of as a possibly-infinite iterated conjunction

§ Viper’s forall represents a possibly-infinite iterated separating conjunction

Christoph Matheja – 02245 – Program Verification

forall x:T :: P <==> P[x/v1] ∧ P[x/v2] ∧ ...

Permissions
P ::= ... | forall x:T :: P

forall x:T :: P <==> P[x/v1] * P[x/v2] * ...

23

Explicit footprints
§ As alternative to predicates, we can specify

permission to an unbounded set of locations by
- maintaining an explicit set of references as ghost state

(the explicit footprint)
- quantifying over the set elements in specifications

Christoph Matheja – 02245 – Program Verification

field head: Ref
field nodes: Set[Ref] // explicit footprint

predicate list(this: Ref) {
acc(this.head) && acc(this.nodes) &&
(forall n: Ref :: n in this.nodes ==> acc(n.elem) && acc(n.next) &&

(n.next != null ==> n.next in this.nodes)) &&
(this.head != null ==> this.head in this.nodes)

}

nodes
head

è 06-qp-list-iter.vpr

24

Limitations of recursive predicates
§ Recursive predicates allow one to specify unbounded data structures

- Traversals happen in the order in which the predicate needs to be unfolded

§ Predicates are not ideal for many other use cases

Christoph Matheja – 02245 – Program Verification

Iterative traversals

Arbitrary cyclic data structuresRandom-access data structures

Other traversal orders

25

Well-formed quantified permissions
§ Viper requires for each assertion acc(E.f) under a forall x:T

that E is injective, that is:

§ Analogous rule applies to predicates (for parameter tuples)

§ Examples

Christoph Matheja – 02245 – Program Verification

x1 != x2 ==> E[x/x1] != E[x/x2]

forall x: Ref :: x in s ==> acc(x.f) // s has type Set[Ref]

forall x: Ref :: acc(y.f) && (y.f != x ==> P(x))

forall i: Int :: 0 <= i && i < |t| ==> acc(t[i].f) // t has type Seq[Ref]
well-formed if t
contains no
duplicates

26

Complex sharing: graph marking
§ We represent a graph as a set of nodes

§ Each node stores a (possibly empty) set of
successors

§ Each node contains a flag that is set during
marking

Christoph Matheja – 02245 – Program Verification

field next: Set[Ref]
field flag: Bool

define graph(nodes) (
forall n: Ref :: n in nodes ==> acc(n.next) && acc(n.flag) && (n.next subset nodes)

)

è 07-graph.vpr

§ Implement and verify a method
method isCyclic(nodes: Set[Ref], root: Ref) returns (res: Bool)

§ that returns whether a singly-linked list starting at root is cyclic.

§ Hints:
§ Represent the list as set of nodes
§ Use a variable to keep track of nodes already traversed
§ Verify memory safety, but not functional correctness

Christoph Matheja – 02245 – Program Verification

Exercise: cycle detection in lists è 8-is-cyclic.vpr

29

Quantified permissions address the limitations of predicates

Christoph Matheja – 02245 – Program Verification

Iterative traversals

Arbitrary cyclic data structuresRandom-access data structures

Other traversal orders

30

Arrays
§ Viper does not have built-in arrays

§ In contrast to sequences, arrays are
mutable heap data structures

§ We model arrays by a set of disjoint
references that can be accessed via
an index

§ loc(a, i).val models a[i]

§ More-dimensional arrays can be
encoded analogously

Christoph Matheja – 02245 – Program Verification

field val: Int // for integer arrays

domain Array {
function loc(a: Array, i: Int): Ref
function len(a: Array): Int
function first(r: Ref): Array
function second(r: Ref): Int

axiom injectivity {
forall a: Array, i: Int :: {loc(a, i)}
first(loc(a, i)) == a &&
second(loc(a, i)) == i

}

axiom length_nonneg {
forall a: Array :: len(a) >= 0

}
}

31

Accessing array locations
§ Arrays are random-access data structures

§ We can express permissions using quantified permissions

- Similarly for sub-ranges of the array

§ We define macros for convenient access

- Bounds are checked implicitly via permissions

Christoph Matheja – 02245 – Program Verification

forall i: Int :: 0 <= i && i < len(a) ==> acc(loc(a, i).val)

define update(a, i, e) {
loc(a, i).val := e

}

define lookup(a, i)
loc(a, i).val

è 09-array-inc-all.vpr

32

Wrap-up: advanced permission models
§ Fractional permissions

- Distinguish between read and write permission
- Are useful to express sharing, to strengthen framing, and for concurrency (see later)

§ Quantified permissions
- Complement predicates for the specification of unbounded data structures
- Are especially useful for random-access structures, complex sharing, and flexible traversals
- Inherit challenges of quantification (controlling instantiations, performance)

§ Other permission models exist
- Magic wands (permission-aware implication): useful to specify partial data structures
- Counting permissions are related to fractional permissions, but use units

Christoph Matheja – 02245 – Program Verification

§ Encode two-dimensional arrays, including the domain and access macros.

§ Write a method reset that sets all array elements to zero

Christoph Matheja – 02245 – Program Verification

Exercise: two-dimensional arrays è 10-2d-array.vpr

