02245 — Module 7

HEAPS AND OBJECTS

=
(=

Y

Christoph Matheja — 02245 — Program Verification

Previously...

PL1 (loops) = PLO
* 4 $ *
PL2 (procedures) MVL
* ¥ ¥ *
PL3 (domains) & set of FOL formulas
*+ 3 S 3y 1
PL4 (built-in types) 4 SMTLIB-2 code
* 4 ¥
PL5 (functions) unsat sat

* Q9 Q
start here

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Tentative course outline

Foundational

. Building a Loops and
— — . s —
Reg Soning ST s first verifier procedures
Principles
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models
Front-end
verifiers

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Why objects and heap-based data structures?

= Static data structures » Dynamic data structures

- Examples: arrays, all mathematical - Examples: resizable arrays, linked
data structures from module 5 lists or trees, object graphs, ...

- Fixed size, stack-allocated - Dynamic size, heap-allocated

- Immutable, no memory reuse - Mutable

- To update the data structure we - To up update the data structure,
create an updated copy we efficiently change it in-place
// static array A = [0,0,0] // dynamic array A = [0,0,0]
A := cons(3, 0) A := new Array(3, 9) // not Viper!
// create updated copy B :=A // A, B reference same array
B := set(A, 1, 17) B[1] := 17 // in-place mutation

assert lookup(A, 1)

= 0 <:::> assert A[l1l] == 17 <:::>

(=]
—
=

Christoph Matheja — 02245 — Program Verification 4

Y

Why verification of heap-manipulating programs?

= Memory safety is the absence of errors related

to memory accesses
- dereferencing null-pointers Qe . ron-memony sfey CVES /S
- accessing unallocated (heap) memory R R
- accessing dangling pointers Microsoft study: ~ 70% of all security vulnerabilities

are caused by memory safety issues

- double-free bugs
- use-after-free bugs

= Heap-manipulating programs are a prime
target for program verification
- Efficient algorithms need efficient data structures
- Device drivers, embedded systems, ...

= Same concepts apply to concurrent programs

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Objects and the heap

1. Heap model
2. Reasoning about objects and references
3. Ownership and access permissions

4. Encoding

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Heap model: an object-based language

field val: Int

method foo() returns (res: Int)

{

var cell: Ref

// create object with field val
cell := new(val)

cell.val := 5
res := cell.val

A heap is a set of objects

No classes: each object can have all fields
declared in the entire program
- Type rules of a source language can be encoded

- Memory consumption is not a concern since
programs are not executed

Obijects are accessed via references

- Field read and update operations
- No information hiding

No explicit de-allocation (garbage collector)
- Conceptually, objects could remain allocated

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Extended programming language (PL6)

Declarations

D ::= ... | field f: T Fields are declared globally
Types Only one type of references
T ::= ... | Ref y yb

Expressions Pre-defined null-reference
E ::= ... | null | E.f Field read expression
Statements

S =

Allocation with given fields

| x := new(f) . .
| X := new(*) or with all fields
| x.f :=E Field update of Ref-typed var.

=

—_

(=
©

Christoph Matheja — 02245 — Program Verification

Y

Objects and the heap

1. Heap model
2. Reasoning about objects and references
3. Ownership and access permissions

4. Encoding

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

10

Proof rule for field read

» |dea: treat field accesses like variable assignment

Field read

{ E !'=null & Q[x / E.f] } x := E.f { Q }

» Additional well-definedness condition prevents null-dereferencing

{ true }

assume r != null && r.val
{ r !=null & r.val == 5
X := p.val

{ x==5}

assert x ==

{ true }

== 5
}

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Exercise: Nalve proof rule for field update

» |dea: treat field accesses like variable assignment

Field update

{ s != null & Q[x.f / E] } x := E.f { Q }

» Additional well-definedness condition prevents null-dereferencing

= The above rule for field update is unsound. Give an example that illustrates that.

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Reminder: method framing with global variables

» Method specification declares which * Frame rule (for any statement S)
variables may get modified
Frame rule where S does
var x, y: Int {P}S{Q} not assign to a
variable that is
method set(v: Int) { P && } S { Q && } free in
modifies x
ensures X ==V
{ .}
= Encoding
y =7 y =7
set(5) havoc x // havoc vars in mod-clause
assume X ==
assert x > 0 && y == 7 <:::> assert x > 0 && y == 7

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

16

Method framing with heap locations: modifies clause

» |dea: method specification declares
which locations may get modified

method set(x: Ref, v: Int) Frame rule
modifies x.f
ensures x.f == v {P}rs{Q}
{ (P& R }S { Q& R }

* Two ways to adapt the frame rule

- «variable» means local or global variable, or «field»
- «variable» means local or global variable, but not «field»

where S does
not assign to a
variable that is
free in

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

17

Method framing with heap locations: naive approach

method set(x: Ref, v: Int)
modifies x.f
ensures x.f == v

{ .}

«variable» may mean «field»

assume y = z
y.f :=7

set(z, 5)
assert y.f == 7 e

Incomplete: framing is very weak, as
information about all objects is lost

Frame rule where S does

{P}s{0Q} not assign to a
variable that is

{ P& R } S{ Q& R } freeinr

«variable» does not mean «field»

assume y == r
y.f :=7

set(z, 5)
assert y.f == 7 (:::)

= Unsound: this interpretation of the
frame rule ignores aliasing!

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 18

Shortcomings of naive method framing approach

= Sound encoding needs to consider aliasing

: : : y.f =7
- I_nherlts shortcomings of candidate rule for /) ancedting of cetle, 5
field updates var tmp: Int
- Explosion of cases z.f := tmp // considers aliasing

assume z.f

- Treatment of assertions that depend on
assert y.f

5
heap locations implicitly !

* Many methods modify a statically-unknown set of heap locations
- Locations cannot be listed explicitly in a modifies clause

method sort(list: Ref)
modifies list.val, list.next.val, list.next.next.val, ..

{ .}

» Listing modified heap locations violates information hiding

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

19

Summary of challenges

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing
= Framing, especially for dynamic data structures

» Writing specifications that preserve information hiding

Additional challenges for concurrent programs, e.g., data races

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

20

Objects and the heap

1. Heap model
2. Reasoning about objects and references
3. Ownership and access permissions

4. Encoding

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

21

Access permissions

= Associate each heap location with at
most one permission

= Read or write access to a memory
location requires permission

= Permissions are created when the
heap location is allocated

= Permissions can be transferred, but
not duplicated or forged

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Permission assertions

Permissions are denoted by access predicates

- Access predicates are not permitted under negations,
disjunctions, and on the left of implications

Predicates may contain both permissions and
value constraints

Predicates must be self-framing, that is, include
all permissions to evaluate their heap accesses

An assertion that does not contain access
predicates is called pure or heap independent

Predicates

P

::= ... | acc(E.f)

acc(p.f) & p.f > ©

requires p.f > 0 Q

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

23

Exercise: swapping the fields of two objects > 04-swap.vpr

* Implement a swap method that exchanges
the field values of two objects. field f: Int

D _ . method swap(a: Ref, b: Ref)
= Specify its functional behavior. { .}

= Write a client method that creates two
objects and calls swap on them. Include an
assertion to check that swap’s specification
IS strong enough.

= Change your client method such that it calls
swap, passing the same reference twice.

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Permission assertions and aliasing

Reminder:

- There is at most one permission for every heap location
- Permissions can be transferred, but not duplicated or forged

If we have two permissions acc(a.f) and acc(b.f), can a and b be aliases?

field f: Int field f: Int
method alias(a: Ref, b: Ref) method alias2(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f) requires acc(a.f) && acc(b.f)
{ {
a.f :=5 assert a == b
} X,
assert a.

s <
¥

=» How do we justify this?

(=]
—
=

Y

27

Permission assertions, more formally

» We extend states to stack-heap pairs ¢ = (s, h)

» The stack s:Var — Value assigns values to variables
- We used this as the full state state used in all previous classes

» The heap h assigns values to object-field pairs

_ _ finite partial
h: ObjectsxFields > Value

- dom(h) is the set of all object-field pairs for which h is defined

- (obj, f) € dom(h) means we have permission to field f of object obj

(=]
—
=

Y

28

Predicates over extended states

Predicate P 3=,)EPifandonlyif

acc(t.f) (3(®), f) € dom(h) f:éf% |esvt;1|i;/€rl];et§2;[]altniid
t; =ty 3(t1) = 3(t2) interpretation
R(ty, ..., t,) (3(t), -, 3(tn)) € R™
QAR SJEQand I ER Examples:
Q>R If S EQthenJI ER J(x) = s(x)
3x: T (Q) Forsomev e TY S[x ==v] EQ
Vx: T (Q) Forallve T J[x =v] EQ 1oy = sl 17

3(x.f) = h(s(x), f)
3(x.f.9) = h(h(s(x),f),9)

» Self-framing predicates are always well-defined

Assume s (a) == s (b) and h (a.f) == s(c)
Does 3 = (U, s,h) £ acc(a.f) Aacc(b.f) b.f == ¢ hold?

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Handling aliasing

= Problem: having permissions a.f and b.f should mean a and b are no aliases

= We introduce a new connective: the separating conjunction P * Q
- P x Q partitions the heap h into two chunks
- Every permission assertion acc(E.f) is evaluated in its own heap chunk
- All other predictes are evaluated in the full heap

(AU, s,h) £, acc(x.f) * acc(y.g) ? O
y

heap h

(AU, s,h) E,; acc(x.f) (AU, s,h) &, acc(y.g)

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

30

Handling aliasing

= Problem: having permissions a.f and b.f should mean a and b are no aliases

= We introduce a new connective: the separating conjunction P * Q
- P x Q partitions the heap h into two chunks
- Every permission assertion acc(E.f) is evaluated in its own heap chunk
- All other predictes are evaluated in the full heap

(AU, s,h) £, acc(x.f) * acc(x.f) ? Q

heap h X y
f We cannot partition heap 1
into /21 and h2 such that
J both give permission to x.f
|
(AU, s,h) E,; acc(x.f) (AU, s,h) &, acc(x.f)

=

Christoph Matheja — 02245 — Program Verification 31

Y

Predicates with separating conjunction

Predicate P (A,)E Pifandonly if

evaluate access permissions in

acc(t.f) (3(), f) € dom(h') current heap chunk /' (initially h)
ti =t, 3(t1) = 3(t2)
R(ty, ..., t,) (S(tD), -, 3(tn)) € R
QAR JE,Qand 3, R
Q*R exists partition of A’ into h1, h2 such that

split current heap chunk into two
R Fn1 Q and 3) R

= Q*Rand QAR are equivalent if Q and R are pure

» Holding permission to x.f and y.f implies that

_ acc(x.f) * acc(y.f) ==> x =y
x and y are no aliases

(=]
—
=

Christoph Matheja — 02245 — Program Verification 32

Y

Separating Conjunction in Viper

Viper's && is the separating conjunction =
Viper has no ordinary conjunction A

Q+Rand QAR are equivalent if Qand R
are pure (heap independent)

For the call swap(x, x), the precondition method.swap(a: Ref, b: Ref)
i equivalent to false requires acc(a.f) && acc(b.f)

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

33

Exercise

Reconsider the method on the right. method alias(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

Change the precondition such that we { 3.f := 5

can call the method by passing both b.f := 7

aliasing references and non-aliasing assert a.f == 5

references to it as arguments without }
violating the precondition.

Does the assertion still hold?
Why (not)?

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing Q
- Permissions and separating conjunction

* Framing, especially for dynamic data structures

» Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

36

Field access: proof rules with permissions

Field read

{ acc(E.f) * P[x / E.f] } x := E.f { acc(E.f) * P }

Field update

{ acc(x.f) * x.f == N } x.f := E { acc(x.f) * x.f == E[x.f / N] }

= Each field access requires (and preserves) the corresponding permission
= Permission to a location implies that the receiver is non-null

= Substitution with logical variable N in the field-update rule is needed to handle
occurrences of x.f inside E (e.g., x.f := x.f + 1)

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

37

Framing

Frame rule

{P}rs{Q} where S does not assign to
{PAR}S{QAR} a variable that is free in R

Unsound if S assigns to
heap locations constrained by R

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

38

Framing

Frame rule

{P}rs{Q} where S does not assign to
{P*R}YS{Q*R} a variable that is free in

* The frame R must be self-framing
- If heap locations constrained by R are disjoint from those modified by S, R is preserved
- Otherwise, the precondition is equivalent to false (the triple holds trivially)

= Example

{acc(x.f)xx.f=N} x.f:=5 {acc(x.f)*xx.f=5}

{acc(x.f)*xx.f =Nxacc(y.f)xy.f =7} x.f:=5 {acc(x.f)*xx.f=5x%acc(y.f)«xy.f =7}

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

39

Framing (cont'd)

= The following proof derives an incorrect triple. Why is it not a valid proof?

{acc(x.f)xx.f =N} x.f:=5 {acc(x.f)xx.f=5}
{acc(x.f)xx.f=Nsxx.f =1} x.f:=5 {acc(x.f)«x.f=5xx.f=1}

» Recall that the frame must be self-framing, which is not the case here
» Making the frame self-framing yields a valid (but vacuous) proof

{acc(x.f)xx.f =N} x.f:=5 {acc(x.f)xx.f=5}

{acc(x.f)*x.f =Nxacc(x.f)*x.f=1} x.f:=5 {acc(x.f)*xx.f=5x%acc(x.f)«x.f=1}

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

40

Framing for method calls

method set(p: Ref, v: Int) // assume we have acc(x.f) && acc(y.f)
requires acc(p.f) assume y.f ==
ensures acc(p.f) && p.f == v set(x, 5)

{ assert x.f == 5 & y.f ==
p.f := v

}

{ acc(p.f) } method set(p, v) {acc(p.f)*xp.f=v}
{acc(x.f) } set(x, 5) {acc(x.f)xx.f=5}
{acc(x.f) xacc(y.f)xy.f =71} set(x, 5) {acc(x.f)*x.f=5x*acc(y.f)xy.f="7}

* Frame rule enables framing without modifies clauses
* A method may modify only heap locations to which it has permission

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

41

Permission transfer

method set(p: Ref, v: Int)
requires acc(p.f)

ensures acc(p.f) && p.f == v

{

// assume we have acc(x.f) && acc(y.f)
assume xX.f == 2 && y.f ==

set(x, 5) Framing!

assert x.f == 5 && y.f == 7

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

42

Permission transfer for method calls

—x| acc(p.f)|} method set(p,)Q—{ acc(p.f)*p.f =v|}

({acc(x.f) } set(x, 5)({ acc(x.f)xx.f=5}
\Eacc(x.f)Hacc(y.f)*y.f:7} set(x, 5) Wacc(x.f) *x.f =5 Hacc(y.f) xy.f="7]

* Permissions are held by method executions or loop iterations

» Calling a method transfers permissions from the caller to the callee (according to
the method precondition)

» Returning from a method transfers permissions from the callee to the caller
(according to the method postcondition)

» Residual permissions are framed around the call

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Framing for loops

// assume we have acc(x.f) && acc(y.f)
x.f :=0
y.f =7
while (x.f < 10)
invariant acc(x.f)

{
x.f :=x.f+1

}

assert y.f ==

{acc(x.f)xx.f <10} x.f:=x.f + 1 {acec(x.f) }
{acc(x.f) } while(x.f < 10) { ... } {acc(x.f)*—x.f <10}

{acc(x.f) xacc(y.f)«y.f =71} while(x.f < 10) { ... } {acc(x.f)x—x.f <10 x*acc(y.f)xy.f =7}

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Permission transfer for loops

acc(x.f)lxx.f <10 } X.fi=x.f 34—

acc(x.f)|}

{acc(x.f) } while(x.f < 10) { ... }({ acc(x.f) x -x.f < 10 }

acc(x.f)qacc(y.f)xy.f =7

\

while(x.f < 10) { ... }\ﬂacc(x.f)l*

—x.f < 10 *

acc(y.f)xy.f="7]}

/

Permissions are held by method executions or loop iterations

Entering a loop transfers permissions from the enclosing context to the loop
(according to the loop invariant)

Leaving a loop transfers permissions from the loop to the enclosing context
(according to the loop invariant)

Residual permissions are framed around the loop

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

45

Permission transfer: inhale and exhale operations

inhale P means: inhale acc(x.f) && x.f ==
- obtain all permissions required by assertion P
- assume all logical constraints

exhale P means: exhale acc(x.f) && x.f ==

- assert all logical constraints
- check and remove all permissions required by assertion P
- havoc any locations to which all permission is lost

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

46

Encoding of method bodies and calls

method foo() returns (..) X := foo()
requires P
ensures Q

{S}
* Encoding without heap and globals * Encoding with heap

assume P inhale P

- Body | // encoding of S - Body ' // encoding of S
assert Q exhale Q
assert P[..] exhale PJ[..]
havoc x havoc x

- Call assume Q[...] - Call inhale Qf...]

* inhale and exhale are permission-aware analogues of assume and assert

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

47

Exercise: definition of exhale

= exhale P means:

- assert all logical constraints
- check and remove all permissions required by P

= Write an example that demonstrates that omitting the havoc from the exhale
encoding would be unsound

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Encoding of loops

= Reminder: encoding without heap

assert I
havoc targets
assume I
if(*) {
assume b
// encoding of S
assert I
assume false
1 else {
assume !b

while(b)
invariant I

1S}

* Encoding with heap

exhale I
havoc targets
inhale I
if(*) {
assume b
// encoding of S
exhale I
assume false
} else {
assume !b

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

50

Encoding of allocation

" new-expression specifies the
relevant fields

X := new(f, g)

» Encoding chooses an arbitrary
reference and inhales permissions
to relevant fields

var x: Ref
inhale acc(x.f) && acc(x.g)

* |[ncomplete information about

freshness of new object

X := new(f)
y := new(f)
assert x l=y

method foo(y: Ref)

{

}

var x: Ref
X := new(f)
assert x l=vy

O

X

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

51

Exercise: working with permissions

Implement, specify, and verify a class for
bank accounts with the following methods:

= create returns a fresh account with initial
balance 0

» deposit deposits a non-negative amount to an
account

* transfer transfers a non-negative amount
between two accounts

= Account balances are integers.

Verify the client program on the right.

= 07-account.vpr

method client()
{

var x: Ref
var y: Ref
var z: Ref

:= create()
y := create()
z := create()

deposit(x, 100)
deposit(y, 200)
deposit(z, 300)
transfer(x, y, 100)
assert x.bal == 0
assert y.bal == 300
assert z.bal == 300

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Verifying memory safety

Memory safety is the absence of errors related to memory accesses, such as,
null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-
of-bounds accesses, double free, etc.

Using permissions, Viper verifies memory safety by default

var x: Ref method free(p: Ref) model de-allocation
X.f := 5 Q requires acc(p.f) via method call
var x: Ref free(x)
X := null Xx.f =5
x.f =5 Q

free(x)

free(x
See module 8 for arrays () Q

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 54

Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing O

- Permissions and separating conjunction

* Framing, especially for dynamic data structures
- Sound frame rule, but no support yet for unbounded data structures

» Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

95

Objects and the heap

1. Heap model
2. Reasoning about objects and references
3. Ownership and access permissions

4. Encoding

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

56

Heaps

= Encode references and fields

type Ref // type for references
const null: Ref // null references

type Field T // polymorphic type for f1i
field f: Int const f: Field
field g: Ref const g: Field

= Heaps map references and field names to values

type HeapType = Map<T>[(Ref, Field T), T]

= Represent the program heap as one global variable
var Heap: HeapType

eld names

int
Ref

// polymorphic map

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Y

Permissions and field access

* Permissions are tracked in a global permission mask

type MaskType = Map<T>[(Ref, Field T), bool]
var Mask: MaskType

= Convention: —Mask[null, f] for all fields

= Field access

v := X.f x.f = E
assert Mask[x,f] assert Mask|[x,f]
v := Heap[x,f] I Heap[x,f] := E I

- Field access requires permission!

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

58

Inhale

= inhale P means:
- obtain all permissions required by assertion P
- assume all logical constraints

* Encoding is defined recursively over the structure of P

inhale E assume [[E]]

inhale acc(E.f) assume —Mask[[[E]], f]
Mask[[[E]], f] := true

inhale E => P if([[E]]) { [[inhale P]] }

inhale P && Q [[inhale P]]; [[inhale Q]]

[[.]] encoding

Reaching more than full
permission goes to magic

Separating conjunction:
add sum of permissions

* The encoding also asserts that E is well-defined (omitted here)

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

59

Exhale (15t attempt)

= exhale P means:
- assert all logical constraints
- check and remove all permissions required by assertion P
- havoc any locations to which all permission is lost

* Encoding is defined recursively over the structure of P
exhale E assert [[E]]

exhale acc(E.f) assert Mask[[[E]], f]
Mask[[[E]], f] := false

havoc Heap[[[E]], f] havoc e.g. by assigning to a

fresh variable
exhale E => P if([[E]]) { [[exhale P]] }

Separating conjunction:

hale P && hale P]]; hal icQj
exhale Q llexhale Pll;_|[exhale QI remove sum of permissions

* The encoding also asserts that E is well-defined (omitted here)

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Example

inhale acc(x.f) && x.f ==

exhale acc(x.f) && x.f ==

assume —Mask[x,]
Mask[x,f] := true

assert Mask[x,f] // well-definedness check

assume Heap[x,f] == <:::>

assert Mask|[x,f]
Mask[x,f] := false
havoc Heap[x, f]

assert Mask[x,f] // well-definedness check

assert Heap[x,f] == Q

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 61

Exhale (fixed)

» Conceptually, permissions should be removed after checking logical constraints

= Adapt encoding

- Check well-definedness against mask at the beginning of the exhale
- Delay havoc until the end of the exhale

var oldMask: MaskType

var newHeap: HeapType

oldMask := Mask

[[exhale P]] // LiRe before, but no havoc and with
well-definedness check on oldMask

assume forall y,g :: Mask[y,g] ==> newHeap[y,g] == Heaply,g]

Heap := newHeap // effectively havocs all Locations to which
permission was Lost

exhale P

(=]
—
=

Christoph Matheja — 02245 — Program Verification 62

Y

Exercise: encoding of exhale

= Encode the operation
exhale acc(x.f) & & x.f == 5
with the fixed encoding.

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Challenges revisited

Heap data structures pose three major challenges for sequential verification
= Reasoning about aliasing

- Permissions and separating conjunction
* Framing, especially for dynamic data structures

- Sound frame rule, but no support yet for unbounded data structures

» Writing specifications that preserve information hiding Q

- Not solved, but see next module

And additional challenges for concurrent programs, e.g., data races
- Permissions are an excellent basis, but see later

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

65

