
1

HEAPS AND OBJECTS
02245 – Module 7

Christoph Matheja – 02245 – Program Verification

2

Previously...

Christoph Matheja – 02245 – Program Verification

set of FOL formulas

PL0

SMTLIB-2 code

unsat sat

PL1 (loops)

MVLPL2 (procedures)

PL3 (domains)

PL4 (built-in types)

PL5 (functions)

start here

3

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers

4

Why objects and heap-based data structures?

§ Static data structures
- Examples: arrays, all mathematical

data structures from module 5
- Fixed size, stack-allocated
- Immutable, no memory reuse
- To update the data structure we

create an updated copy

§ Dynamic data structures
- Examples: resizable arrays, linked

lists or trees, object graphs, ...
- Dynamic size, heap-allocated
- Mutable
- To up update the data structure,

we efficiently change it in-place

Christoph Matheja – 02245 – Program Verification

// static array A = [0,0,0]
A := cons(3, 0)

// create updated copy
B := set(A, 1, 17)

assert lookup(A, 1) == 0

// dynamic array A = [0,0,0]
A := new Array(3, 0) // not Viper!

B := A // A, B reference same array
B[1] := 17 // in-place mutation

assert A[1] == 17

5

Why verification of heap-manipulating programs?

Christoph Matheja – 02245 – Program Verification

Microsoft study: ~ 70% of all security vulnerabilities
are caused by memory safety issues

6

§ Memory safety is the absence of errors related
to memory accesses
- dereferencing null-pointers
- accessing unallocated (heap) memory
- accessing dangling pointers
- double-free bugs
- use-after-free bugs

§ Heap-manipulating programs are a prime
target for program verification
- Efficient algorithms need efficient data structures
- Device drivers, embedded systems, ...

§ Same concepts apply to concurrent programs

Christoph Matheja – 02245 – Program Verification

Why verification of heap-manipulating programs?

7

1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding

Christoph Matheja – 02245 – Program Verification

Objects and the heap

8

Heap model: an object-based language è 00-heap.vpr

Christoph Matheja – 02245 – Program Verification

§ A heap is a set of objects

§ No classes: each object can have all fields
declared in the entire program
- Type rules of a source language can be encoded
- Memory consumption is not a concern since

programs are not executed

§ Objects are accessed via references
- Field read and update operations
- No information hiding

§ No explicit de-allocation (garbage collector)
- Conceptually, objects could remain allocated

field val: Int

method foo() returns (res: Int)
{
var cell: Ref

// create object with field val
cell := new(val)

cell.val := 5
res := cell.val

}

9

Extended programming language (PL6)

Christoph Matheja – 02245 – Program Verification

Declarations
D ::= ... | field f: T

Expressions
E ::= ... | null | E.f

Statements
S ::= ...

| x := new(!f)
| x := new(*)
| x.f := E

Types
T ::= ... | Ref

Allocation with given fields
or with all fields

Field update of Ref-typed var.

Only one type of references

Pre-defined null-reference

Field read expression

Fields are declared globally

10

Objects and the heap

Christoph Matheja – 02245 – Program Verification

1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding

11

§ Idea: treat field accesses like variable assignment

§ Additional well-definedness condition prevents null-dereferencing

Christoph Matheja – 02245 – Program Verification

Proof rule for field read è 01-field-read.vpr

Field read

{ E != null && Q[x / E.f] } x := E.f { Q }

{ true }
assume r != null && r.val == 5
{ r != null && r.val == 5 }
x := p.val
{ x == 5 }
assert x == 5
{ true }

§ Idea: treat field accesses like variable assignment

§ Additional well-definedness condition prevents null-dereferencing

§ The above rule for field update is unsound. Give an example that illustrates that.

Christoph Matheja – 02245 – Program Verification

Exercise: Naïve proof rule for field update

Field update

{ x != null && Q[x.f / E] } x.f := E { Q }

§ Aliasing: two references that point to the
same object in memory

Christoph Matheja – 02245 – Program Verification

Solution: Naïve proof rules for field update è 02-field-update.vpr

field val: Int

method foo(x: Ref)
{
// ...
{ true }
assume x != null && x.val == 5
{ x != null &&

y != null && x.val == 5 }
y := x // create an alias
{ x != null

&& y != null && y.val == 5 }
x.val := 7
{ y != null && y.val == 5 }
assert y.val == 5

}

Field read
__
{ E != null && Q[x / E.f] } x := E.f { Q }

Field update
__
{ x != null && Q[x.f / E] } x := E.f { Q }

should not verify!

14

Field access: candidate proof rules with aliasing

Christoph Matheja – 02245 – Program Verification

§ Idea: reflect potential aliasing in precondition of field-update rule

§ Adjusted rule correctly
accounts for aliasing

Field update (informal!)
__
{ x != null && Q[E2.f / (E2==x) ? E : E2.f] } x.f := E { Q }

method foo(x: Ref)
{
var y: Ref
assume x != null && x.val == 5
{ x != null && x != null && (x==x ? 7 : x.val) == 5 }
y := x
{ x != null && y != null && (y==x ? 7 : y.val) == 5 }
x.val := 7
{ y != null && y.val == 5 }
assert y.val == 5

}

“substitute field access for
all objects E2 equal to x”

15

Shortcomings of candidate proof rule for field update

Christoph Matheja – 02245 – Program Verification

§ Size of assertions grows exponentially in the worst case

§ Rule requires explicit syntactic occurrence of field locations in the assertion, but
properties may depend on unboundedly many field locations
- Example: a linked list is sorted (how many node.next do we need?)

{ x != null && y != null && t != null && x.val == 5 && y.val == 7 }
{ ... && (x==y ? (t == x ? (...) : (...)) : (x==x ? (...) : (...))) == 7 && ... }
t.val := x.val
{ ... && x==y ? (t==x ? y.val : t.val) : (x==x ? y.val : x.val)) == 7 && ... }
x.val := y.val
{ ... (x==y ? t.val : x.val) == 7 && ... }
y.val := t.val
{ x.val == 7 && ... }

16

Reminder: method framing with global variables

Christoph Matheja – 02245 – Program Verification

§ Frame rule (for any statement S)

§ Encoding

§ Method specification declares which
variables may get modified

var x, y: Int

method set(v: Int)
modifies x
ensures x == v

{ … }

y := 7
var x // havoc vars in mod-clause
assume x == 5
assert x > 0 && y == 7

y := 7
set(5)

assert x > 0 && y == 7

Frame rule
{ P } S { Q }

{ P && R } S { Q && R }

where S does
not assign to a
variable that is
free in R

17

Method framing with heap locations: modifies clause

Christoph Matheja – 02245 – Program Verification

§ Two ways to adapt the frame rule
- «variable» means local or global variable, or «field»
- «variable» means local or global variable, but not «field»

§ Idea: method specification declares
which locations may get modified

method set(x: Ref, v: Int)
modifies x.f
ensures x.f == v

{ … }

Frame rule
{ P } S { Q }

{ P && R } S { Q && R }

where S does
not assign to a
variable that is
free in R

18

Method framing with heap locations: naïve approach

Christoph Matheja – 02245 – Program Verification

«variable» does not mean «field»

§ Unsound: this interpretation of the
frame rule ignores aliasing!

«variable» may mean «field»

§ Incomplete: framing is very weak, as
information about all objects is lost

method set(x: Ref, v: Int)
modifies x.f
ensures x.f == v

{ … }

assume y != z
y.f := 7
set(z, 5)
assert y.f == 7

assume y == r
y.f := 7
set(z, 5)
assert y.f == 7

Frame rule
{ P } S { Q }

{ P && R } S { Q && R }

where S does
not assign to a
variable that is
free in R

19

Shortcomings of naïve method framing approach

Christoph Matheja – 02245 – Program Verification

§ Sound encoding needs to consider aliasing
- Inherits shortcomings of candidate rule for

field updates
- Explosion of cases
- Treatment of assertions that depend on

heap locations implicitly

§ Many methods modify a statically-unknown set of heap locations
- Locations cannot be listed explicitly in a modifies clause

§ Listing modified heap locations violates information hiding

method sort(list: Ref)
modifies list.val, list.next.val, list.next.next.val, …

{ … }

y.f := 7
// encoding of set(z, 5)
var tmp: Int
z.f := tmp // considers aliasing
assume z.f == 5
assert y.f == 7

20

Summary of challenges

Christoph Matheja – 02245 – Program Verification

Heap data structures pose three major challenges for sequential verification

§ Reasoning about aliasing

§ Framing, especially for dynamic data structures

§ Writing specifications that preserve information hiding

Additional challenges for concurrent programs, e.g., data races

21

Objects and the heap

1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding

Christoph Matheja – 02245 – Program Verification

22

Access permissions
§ Associate each heap location with at

most one permission

§ Read or write access to a memory
location requires permission

§ Permissions are created when the
heap location is allocated

§ Permissions can be transferred, but
not duplicated or forged

Christoph Matheja – 02245 – Program Verification

f
x f

y

g

zf

g

y.f := 5

x.f := y.f

x.f := 5

z.g := x.f

23

Permission assertions è 03-object.vpr

§ Permissions are denoted by access predicates
- Access predicates are not permitted under negations,

disjunctions, and on the left of implications

§ Predicates may contain both permissions and
value constraints

§ Predicates must be self-framing, that is, include
all permissions to evaluate their heap accesses

§ An assertion that does not contain access
predicates is called pure or heap independent

Christoph Matheja – 02245 – Program Verification

Predicates
P ::= ... | acc(E.f)

acc(p.f) && p.f > 0

requires p.f > 0

§ Implement a swap method that exchanges
the field values of two objects.

§ Specify its functional behavior.

§ Write a client method that creates two
objects and calls swap on them. Include an
assertion to check that swap’s specification
is strong enough.

§ Change your client method such that it calls
swap, passing the same reference twice.

Christoph Matheja – 02245 – Program Verification

Exercise: swapping the fields of two objects

field f: Int

method swap(a: Ref, b: Ref)
{ … }

è 04-swap.vpr

Solution: swapping the fields of two objects

§ Implement a swap method that exchanges
the field values of two objects.

§ Specify its functional behavior.

§ Write a client method that creates two objects
and calls swap on them. Include an assertion
to check that swap’s specification is strong
enough.

Christoph Matheja – 02245 – Program Verification

field f: Int

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)
ensures acc(a.f) && acc(b.f)
ensures a.f == old(b.f) && b.f == old(a.f)

{
var tmp: Int
tmp := a.f
a.f := b.f
b.f := tmp

}

method client1()
{
var x: Ref
var y: Ref
x := new(f) // get permission for f
y := new(f)
x.f := 5 // initialize f
y.f := 7
swap(x, y)
assert x.f == 7 && y.f == 5

}

Solution: swapping the fields of two objects

§ Implement a swap method that exchanges
the field values of two objects.

§ Specify its functional behavior.

§ Change your client method such that it swaps
an object with itself.

Christoph Matheja – 02245 – Program Verification

field f: Int

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)
ensures acc(a.f) && acc(b.f)
ensures a.f == old(b.f) && b.f == old(a.f)

{
var tmp: Int
tmp := a.f
a.f := b.f
b.f := tmp

}

method client2()
{
var x: Ref
x := new(f) // get permission for f
x.f := 5 // initialize f
swap(x, x) // precondition violation

}

27

Reminder:
- There is at most one permission for every heap location
- Permissions can be transferred, but not duplicated or forged

Christoph Matheja – 02245 – Program Verification

Permission assertions and aliasing è 05-alias.vpr

If we have two permissions acc(a.f) and acc(b.f), can a and b be aliases?

field f: Int

method alias(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

{
a.f := 5
b.f := 7
assert a.f == 5

}

field f: Int

method alias2(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

{
assert a == b

}

è How do we justify this?

28

§ We extend states to stack-heap pairs 𝜎 = (𝑠, ℎ)

§ The stack 𝑠: 𝐕𝐚𝐫 → 𝐕𝐚𝐥𝐮𝐞 assigns values to variables
- We used this as the full state state used in all previous classes

§ The heap ℎ assigns values to object-field pairs

ℎ:𝐎𝐛𝐣𝐞𝐜𝐭𝐬×𝐅𝐢𝐞𝐥𝐝𝐬
0inite partial

𝐕𝐚𝐥𝐮𝐞

- 𝑑𝑜𝑚(ℎ) is the set of all object-field pairs for which h is defined

- obj, 𝑓 ∈ 𝑑𝑜𝑚(ℎ) means we have permission to field 𝑓 of object obj

Alternative: 𝑝𝑒𝑟𝑚𝑀𝑎𝑠𝑘:𝐎𝐛𝐣𝐞𝐜𝐭𝐬×𝐅𝐢𝐞𝐥𝐝𝐬
0inite partial

𝐁𝐨𝐨𝐥

Christoph Matheja – 02245 – Program Verification

Permission assertions, more formally

29

§ Self-framing predicates are always well-defined

Christoph Matheja – 02245 – Program Verification

Predicates over extended states
Predicate P ℑ = (𝔄, 𝑠, ℎ) ⊨ P if and only if

acc(𝑡.f) (ℑ 𝑡 , 𝑓) ∈ 𝑑𝑜𝑚(ℎ)
𝑡! = 𝑡" ℑ 𝑡! = ℑ(𝑡")

𝑅(𝑡!, … , 𝑡#) ℑ 𝑡! , … , ℑ 𝑡# ∈ 𝑅𝔄

Q ∧ R ℑ ⊨ Q and ℑ ⊨ R
Q ⇒ R If ℑ ⊨ Q, then ℑ ⊨ R

∃𝑥: 𝐓 (Q) For some v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ Q
∀𝑥: 𝐓 (Q) For all v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ Q

ℑ(𝑡) is the value obtained
from evaluating term 𝑡 in
interpretation ℑ

Examples:

ℑ 𝑥 = 𝑠 𝑥

ℑ(𝑥 + 17) = 𝑠(𝑥) +𝔄 17𝔄

ℑ(𝑥. 𝑓) = ℎ(𝑠 𝑥 , 𝑓)

ℑ(𝑥. 𝑓. 𝑔) = ℎ(ℎ 𝑠 𝑥 , 𝑓 , 𝑔)
Assume 𝑠 (a) == 𝑠 (b) and ℎ (a.f) == 𝑠(c)

Does ℑ = (𝔄, 𝑠, ℎ) ⊨ acc(a.f) ∧ acc(b.f) ∧ b.f == c hold?

30

§ Problem: having permissions a.f and b.f should mean a and b are no aliases

§ We introduce a new connective: the separating conjunction P ∗ Q
- P ∗ Q partitions the heap ℎ into two chunks
- Every permission assertion acc(E.f) is evaluated in its own heap chunk
- All other predictes are evaluated in the full heap

Christoph Matheja – 02245 – Program Verification

Handling aliasing

heap ℎ
f

x

g

y

(𝔄, 𝑠, ℎ) ⊨% acc(x.f) * acc(y.g) ?

(𝔄, 𝑠, ℎ) ⊨%! acc(x.f) (𝔄, 𝑠, ℎ) ⊨%" acc(y.g)

31

§ Problem: having permissions a.f and b.f should mean a and b are no aliases

§ We introduce a new connective: the separating conjunction P ∗ Q
- P ∗ Q partitions the heap ℎ into two chunks
- Every permission assertion acc(E.f) is evaluated in its own heap chunk
- All other predictes are evaluated in the full heap

Christoph Matheja – 02245 – Program Verification

Handling aliasing

heap ℎ
f

x

g

y

(𝔄, 𝑠, ℎ) ⊨% acc(x.f) * acc(x.f) ?

(𝔄, 𝑠, ℎ) ⊨%! acc(x.f) (𝔄, 𝑠, ℎ) ⊨%" acc(x.f)

We cannot partition heap ℎ
into ℎ1 and ℎ2 such that
both give permission to x.f

32Christoph Matheja – 02245 – Program Verification

Predicates with separating conjunction
Predicate P ℑ = (𝔄, 𝑠, ℎ) ⊨%& P if and only if

acc(𝑡.f) (ℑ 𝑡 , 𝑓) ∈ 𝑑𝑜𝑚(ℎ′)
𝑡! = 𝑡" ℑ 𝑡! = ℑ(𝑡")

𝑅(𝑡!, … , 𝑡#) ℑ 𝑡! , … , ℑ 𝑡# ∈ 𝑅𝔄

Q ∧ R ℑ ⊨%& Q and ℑ ⊨%& R
Q ∗ R exists partition of ℎ′ into ℎ1, ℎ2 such that

ℑ ⊨%! Q and ℑ ⊨%" R
... ...

§ Q ∗ R and Q ∧ R are equivalent if Q and R are pure

§ Holding permission to x.f and y.f implies that
x and y are no aliases

evaluate access permissions in
current heap chunk ℎ′ (initially ℎ)

split current heap chunk into two

acc(x.f) * acc(y.f) ==> x != y

33

§ Viper’s && is the separating conjunction ∗

§ Viper has no ordinary conjunction ∧

§ Q ∗ R and Q ∧ R are equivalent if Q and R
are pure (heap independent)

§ For the call swap(x, x), the precondition
is equivalent to false

Christoph Matheja – 02245 – Program Verification

Separating Conjunction in Viper

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

è 04-swap.vpr
è 05-alias.vpr

§ Reconsider the method on the right.

§ Change the precondition such that we
can call the method by passing both
aliasing references and non-aliasing
references to it as arguments without
violating the precondition.

§ Does the assertion still hold?
Why (not)?

Christoph Matheja – 02245 – Program Verification

Exercise
method alias(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

{
a.f := 5
b.f := 7
assert a.f == 5

}

§ Reconsider the method on the right.

§ Change the precondition such that we
can call the method by passing both
aliasing references and non-aliasing
references to it as arguments without
violating the precondition.

§ Does the assertion still hold?
Why (not)?

Christoph Matheja – 02245 – Program Verification

Solution
method alias(a: Ref, b: Ref)
requires acc(a.f)
&& (b != a ==> acc(b.f))

{
a.f := 5
b.f := 7
assert a.f == 5

}

è 06-alias.vpr

36

Challenges revisited
Heap data structures pose three major challenges for sequential verification

§ Reasoning about aliasing
- Permissions and separating conjunction

§ Framing, especially for dynamic data structures

§ Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races

Christoph Matheja – 02245 – Program Verification

37

§ Each field access requires (and preserves) the corresponding permission

§ Permission to a location implies that the receiver is non-null

§ Substitution with logical variable N in the field-update rule is needed to handle
occurrences of x.f inside E (e.g., x.f := x.f + 1)

Field access: proof rules with permissions

Christoph Matheja – 02245 – Program Verification

Field read
__
{ acc(E.f) * P[x / E.f] } x := E.f { acc(E.f) * P }

Field update
__
{ acc(x.f) * x.f == N } x.f := E { acc(x.f) * x.f == E[x.f / N] }

38

Framing

Christoph Matheja – 02245 – Program Verification

Unsound if S assigns to
heap locations constrained by R

Frame rule
{ P } S { Q }

{ P ∧ R } S { Q ∧ R }
where S does not assign to
a variable that is free in R

39

Framing

§ The frame R must be self-framing
- If heap locations constrained by R are disjoint from those modified by S, R is preserved
- Otherwise, the precondition is equivalent to false (the triple holds trivially)

§ Example

Christoph Matheja – 02245 – Program Verification

Frame rule
{ P } S { Q }

{ P * R } S { Q * R }
where S does not assign to
a variable that is free in R

40

Framing (cont’d)
§ The following proof derives an incorrect triple. Why is it not a valid proof?

Christoph Matheja – 02245 – Program Verification

§ Recall that the frame must be self-framing, which is not the case here
§ Making the frame self-framing yields a valid (but vacuous) proof

41

Framing for method calls

§ Frame rule enables framing without modifies clauses
§ A method may modify only heap locations to which it has permission

Christoph Matheja – 02245 – Program Verification

method set(p: Ref, v: Int)
requires acc(p.f)
ensures acc(p.f) && p.f == v

{
p.f := v

}

// assume we have acc(x.f)

set(x, 5)
assert x.f == 5

// assume we have acc(x.f) && acc(y.f)
assume y.f == 7
set(x, 5)
assert x.f == 5 && y.f == 7

42

method set(p: Ref, v: Int)
requires acc(p.f)
ensures acc(p.f) && p.f == v

{

p.f := v

}

p

// assume we have acc(x.f) && acc(y.f)
assume x.f == 2 && y.f == 7

set(x, 5)

assert x.f == 5 && y.f == 7

?

7

x

y
7

2

Permission transfer

Christoph Matheja – 02245 – Program Verification

p

?

7

x

y
7

5

Framing!

?

43

Permission transfer for method calls

§ Permissions are held by method executions or loop iterations
§ Calling a method transfers permissions from the caller to the callee (according to

the method precondition)
§ Returning from a method transfers permissions from the callee to the caller

(according to the method postcondition)
§ Residual permissions are framed around the call

Christoph Matheja – 02245 – Program Verification

44

Framing for loops

Christoph Matheja – 02245 – Program Verification

// assume we have acc(x.f)
x.f := 0

while (x.f < 10)
invariant acc(x.f)

{
x.f := x.f + 1

}

// assume we have acc(x.f) && acc(y.f)
x.f := 0
y.f := 7
while (x.f < 10)
invariant acc(x.f)

{
x.f := x.f + 1

}
assert y.f == 7

45

Permission transfer for loops

§ Permissions are held by method executions or loop iterations
§ Entering a loop transfers permissions from the enclosing context to the loop

(according to the loop invariant)
§ Leaving a loop transfers permissions from the loop to the enclosing context

(according to the loop invariant)
§ Residual permissions are framed around the loop

Christoph Matheja – 02245 – Program Verification

46

Permission transfer: inhale and exhale operations
§ inhale P means:

- obtain all permissions required by assertion P
- assume all logical constraints

§ exhale P means:
- assert all logical constraints
- check and remove all permissions required by assertion P
- havoc any locations to which all permission is lost

Christoph Matheja – 02245 – Program Verification

inhale acc(x.f) && x.f == 2

?

7

x

y
7

2

exhale acc(x.f) && x.f == 2

?

7

x

y
7

2

47

Encoding of method bodies and calls

§ Encoding without heap and globals

- Body

- Call

Christoph Matheja – 02245 – Program Verification

method foo() returns (…)
requires P
ensures Q

{ S }

assume P
// encoding of S
assert Q

x := foo()

assert P[…]
havoc x
assume Q[…]

§ Encoding with heap

- Body

- Call

inhale P
// encoding of S
exhale Q

exhale P[…]
havoc x
inhale Q[…]

§ inhale and exhale are permission-aware analogues of assume and assert

§ exhale P means:
- assert all logical constraints
- check and remove all permissions required by P
- havoc (reset) any locations to which all permission is lost

§ Write an example that demonstrates that omitting the havoc from the exhale
encoding would be unsound

Christoph Matheja – 02245 – Program Verification

Exercise: definition of exhale

§ exhale P means:
- assert all logical constraints
- check and remove all permissions required by P
- havoc (reset) any locations to which all permission is lost

§ Write an example that demonstrates that omitting the
havoc from the exhale encoding would be unsound

Christoph Matheja – 02245 – Program Verification

Solution: definition of exhale

§ Before the call, we have acc(x.f) && x.f == 5
§ exhale without havoc would retain x.f == 5
§ We assume x.f == 0 through the method call
§ We reached a contradiction!

method reset(p: Ref)
requires acc(p.f)
ensures acc(p.f) && p.f == 0

{
p.f := 0

}

var x: Ref
inhale acc(x.f) && x.f == 5
reset(x)
assert x.f == 5 // would verify
assert false // would verify

50

Encoding of loops

§ Reminder: encoding without heap

Christoph Matheja – 02245 – Program Verification

while(b)
invariant I

{ S }

assert I
havoc targets
assume I
if(*) {
assume b
// encoding of S
assert I
assume false

} else {
assume !b

}

§ Encoding with heap

exhale I
havoc targets
inhale I
if(*) {
assume b
// encoding of S
exhale I
assume false

} else {
assume !b

}

51

Encoding of allocation
§ new-expression specifies the

relevant fields

§ Encoding chooses an arbitrary
reference and inhales permissions
to relevant fields

Christoph Matheja – 02245 – Program Verification

x := new(f, g)

var x: Ref
inhale acc(x.f) && acc(x.g)

§ Incomplete information about
freshness of new object

x := new(f)
y := new(f)
assert x != y

method foo(y: Ref)
{
var x: Ref
x := new(f)
assert x != y

}

§ Implement, specify, and verify a class for
bank accounts with the following methods:
§ create returns a fresh account with initial

balance 0
§ deposit deposits a non-negative amount to an

account
§ transfer transfers a non-negative amount

between two accounts
§ Account balances are integers.

§ Verify the client program on the right.

Christoph Matheja – 02245 – Program Verification

Exercise: working with permissions
method client()
{
var x: Ref
var y: Ref
var z: Ref
x := create()
y := create()
z := create()
deposit(x, 100)
deposit(y, 200)
deposit(z, 300)
transfer(x, y, 100)
assert x.bal == 0
assert y.bal == 300
assert z.bal == 300

}

è 07-account.vpr

Solution: working with permissions

Christoph Matheja – 02245 – Program Verification

method transfer(
from: Ref, to: Ref, amount: Int)

requires acc(from.bal) && acc(to.bal)
requires 0 <= amount && amount <= from.bal
ensures acc(from.bal) && acc(to.bal)
ensures to.bal == old(to.bal) + amount
ensures from.bal == old(from.bal) - amount

{
to.bal := to.bal + amount
from.bal := from.bal - amount

}

field bal: Int

method create() returns (n: Ref)
ensures acc(n.bal) && n.bal == 0

{
n := new(bal)
n.bal := 0

}

method deposit(to: Ref, amount: Int)
requires acc(to.bal) && 0 <= amount
ensures acc(to.bal)
ensures to.bal == old(to.bal) + amount

{
to.bal := to.bal + amount

}

54

Verifying memory safety
§ Memory safety is the absence of errors related to memory accesses, such as,

null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-
of-bounds accesses, double free, etc.

§ Using permissions, Viper verifies memory safety by default

Christoph Matheja – 02245 – Program Verification

var x: Ref
x.f := 5

var x: Ref
x := null
x.f := 5

method free(p: Ref)
requires acc(p.f)

free(x)
free(x)

free(x)
x.f := 5

model de-allocation
via method call

See module 8 for arrays

è 08-memory-safety.vpr

55

Challenges revisited
Heap data structures pose three major challenges for sequential verification

§ Reasoning about aliasing
- Permissions and separating conjunction

§ Framing, especially for dynamic data structures
- Sound frame rule, but no support yet for unbounded data structures

§ Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races

Christoph Matheja – 02245 – Program Verification

56

Objects and the heap

1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding

Christoph Matheja – 02245 – Program Verification

57

Heaps
§ Encode references and fields

§ Heaps map references and field names to values

§ Represent the program heap as one global variable

Christoph Matheja – 02245 – Program Verification

type Ref // type for references
const null: Ref // null references

type Field T // polymorphic type for field names

type HeapType = Map<T>[(Ref, Field T), T] // polymorphic map

field f: Int
field g: Ref

const f: Field int
const g: Field Ref

var Heap: HeapType

58

Permissions and field access
§ Permissions are tracked in a global permission mask

§ Convention: ¬Mask[null, f] for all fields f

§ Field access

- Field access requires permission!

Christoph Matheja – 02245 – Program Verification

type MaskType = Map<T>[(Ref, Field T), bool]
var Mask: MaskType

v := x.f

v := Heap[x,f]

x.f := E

Heap[x,f] := E
assert Mask[x,f]
v := Heap[x,f]

assert Mask[x,f]
Heap[x,f] := E

59

Inhale
§ inhale P means:

- obtain all permissions required by assertion P
- assume all logical constraints

§ Encoding is defined recursively over the structure of P

§ The encoding also asserts that E is well-defined (omitted here)
Christoph Matheja – 02245 – Program Verification

inhale E assume [[E]]

inhale acc(E.f)
Mask[[[E]],f] := true

inhale E => P if([[E]]) { [[inhale P]] }

inhale P && Q [[inhale P]]; [[inhale Q]]

Reaching more than full
permission goes to magic

Separating conjunction:
add sum of permissions

assume ¬Mask[[[E]], f]
Mask[[[E]], f] := true

[[.]] encoding

è 09-inhale.vpr

60

Exhale (1st attempt)
§ exhale P means:

- assert all logical constraints
- check and remove all permissions required by assertion P
- havoc any locations to which all permission is lost

§ Encoding is defined recursively over the structure of P

§ The encoding also asserts that E is well-defined (omitted here)
Christoph Matheja – 02245 – Program Verification

exhale E assert [[E]]

exhale acc(E.f) assert Mask[[[E]], f]
Mask[[[E]], f] := false
havoc Heap[[[E]], f]

exhale E => P if([[E]]) { [[exhale P]] }

exhale P && Q [[exhale P]]; [[exhale Q]]
Separating conjunction:
remove sum of permissions

havoc e.g. by assigning to a
fresh variable

61

Example

Christoph Matheja – 02245 – Program Verification

inhale acc(x.f) && x.f == 5

assume ¬Mask[x,f]
Mask[x,f] := true

assert Mask[x,f] // well-definedness check
assume Heap[x,f] == 5

exhale acc(x.f) && x.f == 5

assert Mask[x,f]
Mask[x,f] := false
havoc Heap[x,f]

assert Mask[x,f] // well-definedness check
assert Heap[x,f] == 5

62

Exhale (fixed)
§ Conceptually, permissions should be removed after checking logical constraints

§ Adapt encoding
- Check well-definedness against mask at the beginning of the exhale
- Delay havoc until the end of the exhale

Christoph Matheja – 02245 – Program Verification

exhale P

var oldMask: MaskType
var newHeap: HeapType
oldMask := Mask
[[exhale P]] // like before, but no havoc and with

well-definedness check on oldMask
assume forall y,g :: Mask[y,g] ==> newHeap[y,g] == Heap[y,g]
Heap := newHeap // effectively havocs all locations to which

permission was lost

§ Encode the operation (on paper, not using Viper)
exhale acc(x.f) && x.f == 5

with the fixed encoding.

Christoph Matheja – 02245 – Program Verification

Exercise: encoding of exhale

§ Encode the operation (on paper, not using Viper)
exhale acc(x.f) && x.f == 5

with the fixed encoding.

Christoph Matheja – 02245 – Program Verification

Solution: encoding of exhale

var oldMask: MaskType
var newHeap: HeapType
oldMask := Mask

assert Mask[x,f]
Mask[x,f] := false

assert oldMask[x,f] // well-definedness check
assert Heap[x,f] == 5

assume forall y,g :: Mask[y,g] ==> newHeap[y,g] == Heap[y,g]
Heap := newHeap

65

Challenges revisited
Heap data structures pose three major challenges for sequential verification

§ Reasoning about aliasing
- Permissions and separating conjunction

§ Framing, especially for dynamic data structures
- Sound frame rule, but no support yet for unbounded data structures

§ Writing specifications that preserve information hiding
- Not solved, but see next module

And additional challenges for concurrent programs, e.g., data races
- Permissions are an excellent basis, but see later

Christoph Matheja – 02245 – Program Verification

