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HEAPS AND OBJECTS
02245 – Module 7

Christoph Matheja – 02245 – Program Verification



2

Previously...
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set of FOL formulas 

PL0

SMTLIB-2 code

unsat sat

PL1 (loops)

MVLPL2 (procedures)

PL3 (domains)

PL4 (built-in types)

PL5 (functions)

start here
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Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a 
first verifierSMT solvers

Foundational 
Reasoning 
Principles

Loops and 
procedures

Advanced 
data types

Heaps and 
objects

Abstraction in 
specifications

Permission 
models

Concurrency Front-end
verifiers
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Why objects and heap-based data structures?

§ Static data structures
- Examples: arrays, all mathematical 

data structures from module 5
- Fixed size, stack-allocated
- Immutable, no memory reuse
- To update the data structure we 

create an updated copy

§ Dynamic data structures
- Examples: resizable arrays, linked 

lists or trees, object graphs, ...
- Dynamic size, heap-allocated
- Mutable
- To up update the data structure, 

we efficiently change it in-place

Christoph Matheja – 02245 – Program Verification

// static array A = [0,0,0] 
A := cons(3, 0) 

// create updated copy
B := set(A, 1, 17)

assert lookup(A, 1) == 0

// dynamic array A = [0,0,0]
A := new Array(3, 0) // not Viper!

B := A // A, B reference same array
B[1] := 17 // in-place mutation

assert A[1] == 17 
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Why verification of heap-manipulating programs?

Christoph Matheja – 02245 – Program Verification

Microsoft study: ~ 70% of all security vulnerabilities 
are caused by memory safety issues
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§ Memory safety is the absence of errors related 
to memory accesses
- dereferencing null-pointers
- accessing unallocated (heap) memory
- accessing dangling pointers
- double-free bugs
- use-after-free bugs

§ Heap-manipulating programs are a prime 
target for program verification
- Efficient algorithms need efficient data structures
- Device drivers, embedded systems, ...

§ Same concepts apply to concurrent programs

Christoph Matheja – 02245 – Program Verification

Why verification of heap-manipulating programs?
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1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding

Christoph Matheja – 02245 – Program Verification

Objects and the heap
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Heap model: an object-based language                     è 00-heap.vpr

Christoph Matheja – 02245 – Program Verification

§ A heap is a set of objects

§ No classes: each object can have all fields 
declared in the entire program
- Type rules of a source language can be encoded
- Memory consumption is not a concern since 

programs are not executed

§ Objects are accessed via references
- Field read and update operations
- No information hiding

§ No explicit de-allocation (garbage collector)
- Conceptually, objects could remain allocated

field val: Int

method foo() returns (res: Int)
{
var cell: Ref

// create object with field val
cell := new(val)

cell.val := 5
res := cell.val

}
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Extended programming language                                       (PL6)

Christoph Matheja – 02245 – Program Verification

Declarations
D ::= ... | field f: T

Expressions
E ::= ... | null | E.f

Statements
S  ::=  ... 

| x := new(!f) 
| x := new(*)
| x.f := E

Types
T ::= ... | Ref

Allocation with given fields
or with all fields

Field update of Ref-typed var.

Only one type of references

Pre-defined null-reference

Field read expression

Fields are declared globally
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Objects and the heap

Christoph Matheja – 02245 – Program Verification

1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding
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§ Idea: treat field accesses like variable assignment

§ Additional well-definedness condition prevents null-dereferencing

Christoph Matheja – 02245 – Program Verification

Proof rule for field read                                          è 01-field-read.vpr

Field read
_____________________________________________
{ E != null && Q[x / E.f] } x := E.f { Q }

{ true }
assume r != null && r.val == 5
{ r != null && r.val == 5 }
x := p.val
{ x == 5 }   
assert x == 5
{ true }



§ Idea: treat field accesses like variable assignment

§ Additional well-definedness condition prevents null-dereferencing

§ The above rule for field update is unsound. Give an example that illustrates that.

Christoph Matheja – 02245 – Program Verification

Exercise: Naïve proof rule for field update

Field update
_____________________________________________
{ x != null && Q[x.f / E] } x.f := E { Q }



§ Aliasing: two references that point to the 
same object in memory

Christoph Matheja – 02245 – Program Verification

Solution: Naïve proof rules for field update         è 02-field-update.vpr

field val: Int

method foo(x: Ref)
{
// ...
{ true }  
assume x != null && x.val == 5
{ x != null && 

y != null && x.val == 5 }  
y := x // create an alias
{ x != null 

&& y != null && y.val == 5 }
x.val := 7
{ y != null && y.val == 5 }
assert y.val == 5

}

Field read
____________________________________________
{ E != null && Q[x / E.f] } x := E.f { Q }

Field update
____________________________________________
{ x != null && Q[x.f / E] } x := E.f { Q }

should not verify!
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Field access: candidate proof rules with aliasing

Christoph Matheja – 02245 – Program Verification

§ Idea: reflect potential aliasing in precondition of field-update rule

§ Adjusted rule correctly 
accounts for aliasing

Field update (informal!)
______________________________________________________________
{ x != null && Q[E2.f / (E2==x) ? E : E2.f] } x.f := E { Q }

method foo(x: Ref)
{
var y: Ref
assume x != null && x.val == 5
{ x != null && x != null && (x==x ? 7 : x.val) == 5 }
y := x
{ x != null && y != null && (y==x ? 7 : y.val) == 5 }
x.val := 7
{ y != null && y.val == 5 }
assert y.val == 5

}

“substitute field access for 
all objects E2 equal to x”
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Shortcomings of candidate proof rule for field update

Christoph Matheja – 02245 – Program Verification

§ Size of assertions grows exponentially in the worst case

§ Rule requires explicit syntactic occurrence of field locations in the assertion, but 
properties may depend on unboundedly many field locations
- Example: a linked list is sorted (how many node.next do we need?)

{ x != null && y != null && t != null && x.val == 5 && y.val == 7 }
{ ... && (x==y ? (t == x ? (...) : (...)) : (x==x ? (...) : (...))) == 7 && ... }
t.val := x.val
{ ... && x==y ? (t==x ? y.val : t.val) : (x==x ? y.val : x.val)) == 7 && ... } 
x.val := y.val
{ ... (x==y ? t.val : x.val) == 7 && ... }
y.val := t.val
{ x.val == 7 && ... }
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Reminder: method framing with global variables

Christoph Matheja – 02245 – Program Verification

§ Frame rule (for any statement S)

§ Encoding

§ Method specification declares which 
variables may get modified

var x, y: Int

method set(v: Int)
modifies x
ensures x == v

{ … }

y := 7
var x  // havoc vars in mod-clause
assume x == 5
assert x > 0 && y == 7

y := 7
set(5)

assert x > 0 && y == 7

Frame rule
{ P } S { Q }

{ P && R } S { Q && R }

where S does 
not assign to a 
variable that is 
free in R
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Method framing with heap locations: modifies clause

Christoph Matheja – 02245 – Program Verification

§ Two ways to adapt the frame rule
- «variable» means local or global variable, or «field»
- «variable» means local or global variable, but not «field»

§ Idea: method specification declares 
which locations may get modified

method set(x: Ref, v: Int)
modifies x.f
ensures x.f == v

{ … }

Frame rule
{ P } S { Q }

{ P && R } S { Q && R }

where S does 
not assign to a 
variable that is 
free in R
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Method framing with heap locations: naïve approach

Christoph Matheja – 02245 – Program Verification

«variable» does not mean «field»

§ Unsound: this interpretation of the 
frame rule ignores aliasing!

«variable» may mean «field» 

§ Incomplete: framing is very weak, as 
information about all objects is lost

method set(x: Ref, v: Int)
modifies x.f
ensures x.f == v

{ … }

assume y != z
y.f := 7
set(z, 5)
assert y.f == 7

assume y == r
y.f := 7
set(z, 5)
assert y.f == 7

Frame rule
{ P } S { Q }

{ P && R } S { Q && R }

where S does 
not assign to a 
variable that is 
free in R
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Shortcomings of naïve method framing approach

Christoph Matheja – 02245 – Program Verification

§ Sound encoding needs to consider aliasing
- Inherits shortcomings of candidate rule for 

field updates
- Explosion of cases
- Treatment of assertions that depend on 

heap locations implicitly

§ Many methods modify a statically-unknown set of heap locations
- Locations cannot be listed explicitly in a modifies clause

§ Listing modified heap locations violates information hiding

method sort(list: Ref)
modifies list.val, list.next.val, list.next.next.val, …

{ … }

y.f := 7
// encoding of set(z, 5)
var tmp: Int
z.f := tmp  // considers aliasing
assume z.f == 5
assert y.f == 7
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Summary of challenges

Christoph Matheja – 02245 – Program Verification

Heap data structures pose three major challenges for sequential verification 

§ Reasoning about aliasing

§ Framing, especially for dynamic data structures

§ Writing specifications that preserve information hiding

Additional challenges for concurrent programs, e.g., data races
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Objects and the heap

1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding

Christoph Matheja – 02245 – Program Verification



22

Access permissions
§ Associate each heap location with at 

most one permission

§ Read or write access to a memory 
location requires permission 

§ Permissions are created when the
heap location is allocated

§ Permissions can be transferred, but 
not duplicated or forged

Christoph Matheja – 02245 – Program Verification

f
x f

y

g

zf

g

y.f := 5

x.f := y.f

x.f := 5

z.g := x.f



23

Permission assertions                                                è 03-object.vpr

§ Permissions are denoted by access predicates
- Access predicates are not permitted under negations,  

disjunctions, and on the left of implications

§ Predicates may contain both permissions and 
value constraints

§ Predicates must be self-framing, that is, include 
all permissions to evaluate their heap accesses

§ An assertion that does not contain access 
predicates is called pure or heap independent

Christoph Matheja – 02245 – Program Verification

Predicates
P  ::=  ... | acc(E.f)

acc(p.f) && p.f > 0

requires p.f > 0



§ Implement a swap method that exchanges 
the field values of two objects. 

§ Specify its functional behavior.

§ Write a client method that creates two 
objects and calls swap on them. Include an 
assertion to check that swap’s specification 
is strong enough.

§ Change your client method such that it calls 
swap, passing the same reference twice.

Christoph Matheja – 02245 – Program Verification

Exercise: swapping the fields of two objects 

field f: Int

method swap(a: Ref, b: Ref)
{ … }

è 04-swap.vpr



Solution: swapping the fields of two objects

§ Implement a swap method that exchanges 
the field values of two objects. 

§ Specify its functional behavior.

§ Write a client method that creates two objects 
and calls swap on them. Include an assertion 
to check that swap’s specification is strong 
enough.

Christoph Matheja – 02245 – Program Verification

field f: Int

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)
ensures acc(a.f) && acc(b.f)
ensures a.f == old(b.f) && b.f == old(a.f)

{
var tmp: Int
tmp := a.f
a.f := b.f
b.f := tmp

}

method client1()
{
var x: Ref
var y: Ref
x := new(f) // get permission for f
y := new(f)
x.f := 5  // initialize f
y.f := 7
swap(x, y)
assert x.f == 7 && y.f == 5

}



Solution: swapping the fields of two objects

§ Implement a swap method that exchanges 
the field values of two objects. 

§ Specify its functional behavior.

§ Change your client method such that it swaps 
an object with itself.

Christoph Matheja – 02245 – Program Verification

field f: Int

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)
ensures acc(a.f) && acc(b.f)
ensures a.f == old(b.f) && b.f == old(a.f)

{
var tmp: Int
tmp := a.f
a.f := b.f
b.f := tmp

}

method client2()
{
var x: Ref
x := new(f) // get permission for f
x.f := 5  // initialize f
swap(x, x) // precondition violation

}
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Reminder:
- There is at most one permission for every heap location
- Permissions can be transferred, but not duplicated or forged

Christoph Matheja – 02245 – Program Verification

Permission assertions and aliasing                             è 05-alias.vpr

If we have two permissions acc(a.f) and acc(b.f), can a and b be aliases?

field f: Int

method alias(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

{
a.f := 5
b.f := 7
assert a.f == 5

}

field f: Int

method alias2(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

{
assert a == b

}

è How do we justify this?
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§ We extend states to stack-heap pairs 𝜎 = (𝑠, ℎ)

§ The stack 𝑠: 𝐕𝐚𝐫 → 𝐕𝐚𝐥𝐮𝐞 assigns values to variables 
- We used this as the full state state used in all previous classes

§ The heap ℎ assigns values to object-field pairs

ℎ:𝐎𝐛𝐣𝐞𝐜𝐭𝐬×𝐅𝐢𝐞𝐥𝐝𝐬
0inite partial

𝐕𝐚𝐥𝐮𝐞

- 𝑑𝑜𝑚(ℎ) is the set of all object-field pairs for which h is defined

- obj, 𝑓 ∈ 𝑑𝑜𝑚(ℎ) means we have permission to field 𝑓 of object obj

Alternative: 𝑝𝑒𝑟𝑚𝑀𝑎𝑠𝑘:𝐎𝐛𝐣𝐞𝐜𝐭𝐬×𝐅𝐢𝐞𝐥𝐝𝐬
0inite partial

𝐁𝐨𝐨𝐥

Christoph Matheja – 02245 – Program Verification

Permission assertions, more formally 
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§ Self-framing predicates are always well-defined

Christoph Matheja – 02245 – Program Verification

Predicates over extended states
Predicate P ℑ = (𝔄, 𝑠, ℎ) ⊨ P if and only if 

acc(𝑡.f) (ℑ 𝑡 , 𝑓) ∈ 𝑑𝑜𝑚(ℎ)
𝑡! = 𝑡" ℑ 𝑡! = ℑ(𝑡")

𝑅(𝑡!, … , 𝑡#) ℑ 𝑡! , … , ℑ 𝑡# ∈ 𝑅𝔄

Q ∧ R ℑ ⊨ Q and ℑ ⊨ R
Q ⇒ R If ℑ ⊨ Q, then ℑ ⊨ R

∃𝑥: 𝐓 (Q) For some v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ Q
∀𝑥: 𝐓 (Q) For all v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ Q

ℑ(𝑡) is the value obtained 
from evaluating term 𝑡 in 
interpretation ℑ

Examples:

ℑ 𝑥 = 𝑠 𝑥

ℑ(𝑥 + 17) = 𝑠(𝑥) +𝔄 17𝔄

ℑ(𝑥. 𝑓) = ℎ(𝑠 𝑥 , 𝑓)

ℑ(𝑥. 𝑓. 𝑔) = ℎ(ℎ 𝑠 𝑥 , 𝑓 , 𝑔)
Assume 𝑠 (a) == 𝑠 (b) and ℎ (a.f) == 𝑠(c)

Does ℑ = (𝔄, 𝑠, ℎ) ⊨ acc(a.f) ∧ acc(b.f) ∧ b.f == c hold?
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§ Problem: having permissions a.f and b.f should mean a and b are no aliases

§ We introduce a new connective: the separating conjunction P ∗ Q
- P ∗ Q partitions the heap ℎ into two chunks
- Every permission assertion acc(E.f) is evaluated in its own heap chunk
- All other predictes are evaluated in the full heap

Christoph Matheja – 02245 – Program Verification

Handling aliasing

heap ℎ
f

x

g

y

(𝔄, 𝑠, ℎ) ⊨% acc(x.f) * acc(y.g) ?

(𝔄, 𝑠, ℎ) ⊨%! acc(x.f) (𝔄, 𝑠, ℎ) ⊨%" acc(y.g)
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§ Problem: having permissions a.f and b.f should mean a and b are no aliases

§ We introduce a new connective: the separating conjunction P ∗ Q
- P ∗ Q partitions the heap ℎ into two chunks
- Every permission assertion acc(E.f) is evaluated in its own heap chunk
- All other predictes are evaluated in the full heap

Christoph Matheja – 02245 – Program Verification

Handling aliasing

heap ℎ
f

x

g

y

(𝔄, 𝑠, ℎ) ⊨% acc(x.f) * acc(x.f) ?

(𝔄, 𝑠, ℎ) ⊨%! acc(x.f) (𝔄, 𝑠, ℎ) ⊨%" acc(x.f)

We cannot partition heap ℎ
into ℎ1 and ℎ2 such that 
both give permission to x.f



32Christoph Matheja – 02245 – Program Verification

Predicates with separating conjunction
Predicate P ℑ = (𝔄, 𝑠, ℎ) ⊨%& P if and only if 

acc(𝑡.f) (ℑ 𝑡 , 𝑓) ∈ 𝑑𝑜𝑚(ℎ′)
𝑡! = 𝑡" ℑ 𝑡! = ℑ(𝑡")

𝑅(𝑡!, … , 𝑡#) ℑ 𝑡! , … , ℑ 𝑡# ∈ 𝑅𝔄

Q ∧ R ℑ ⊨%& Q and ℑ ⊨%& R
Q ∗ R exists partition of ℎ′ into ℎ1, ℎ2 such that

ℑ ⊨%! Q and ℑ ⊨%" R
... ...

§ Q ∗ R and Q ∧ R are equivalent if Q and R are pure

§ Holding permission to x.f and y.f implies that 
x and y are no aliases

evaluate access permissions in 
current heap chunk ℎ′ (initially ℎ)

split current heap chunk into two

acc(x.f) * acc(y.f) ==> x != y
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§ Viper’s && is the separating conjunction ∗

§ Viper has no ordinary conjunction ∧

§ Q ∗ R and Q ∧ R are equivalent if Q and R
are pure (heap independent)

§ For the call swap(x, x), the precondition 
is equivalent to false

Christoph Matheja – 02245 – Program Verification

Separating Conjunction in Viper

method swap(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

è 04-swap.vpr
è 05-alias.vpr



§ Reconsider the method on the right.

§ Change the precondition such that we 
can call the method by passing both 
aliasing references and non-aliasing 
references to it as arguments without 
violating the precondition.

§ Does the assertion still hold?
Why (not)?

Christoph Matheja – 02245 – Program Verification

Exercise
method alias(a: Ref, b: Ref)
requires acc(a.f) && acc(b.f)

{
a.f := 5
b.f := 7
assert a.f == 5

}



§ Reconsider the method on the right.

§ Change the precondition such that we 
can call the method by passing both 
aliasing references and non-aliasing 
references to it as arguments without 
violating the precondition.

§ Does the assertion still hold?
Why (not)?

Christoph Matheja – 02245 – Program Verification

Solution
method alias(a: Ref, b: Ref)
requires acc(a.f) 
&& (b != a ==> acc(b.f))

{
a.f := 5
b.f := 7
assert a.f == 5

}

è 06-alias.vpr
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Challenges revisited
Heap data structures pose three major challenges for sequential verification 

§ Reasoning about aliasing
- Permissions and separating conjunction

§ Framing, especially for dynamic data structures

§ Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races

Christoph Matheja – 02245 – Program Verification
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§ Each field access requires (and preserves) the corresponding permission

§ Permission to a location implies that the receiver is non-null

§ Substitution with logical variable N in the field-update rule is needed to handle 
occurrences of x.f inside E (e.g., x.f := x.f + 1)

Field access: proof rules with permissions

Christoph Matheja – 02245 – Program Verification

Field read
______________________________________________________
{ acc(E.f) * P[x / E.f] } x := E.f { acc(E.f) * P }

Field update
__________________________________________________________________
{ acc(x.f) * x.f == N } x.f := E { acc(x.f) * x.f == E[x.f / N] }
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Framing

Christoph Matheja – 02245 – Program Verification

Unsound if S assigns to
heap locations constrained by R

Frame rule
{ P } S { Q }

{ P ∧ R } S { Q ∧ R }
where S does not assign to 
a variable that is free in R
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Framing

§ The frame R must be self-framing
- If heap locations constrained by R are disjoint from those modified by S, R is preserved
- Otherwise, the precondition is equivalent to false (the triple holds trivially)

§ Example

Christoph Matheja – 02245 – Program Verification

Frame rule
{ P } S { Q }

{ P * R } S { Q * R }
where S does not assign to 
a variable that is free in R
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Framing (cont’d)
§ The following proof derives an incorrect triple. Why is it not a valid proof?

Christoph Matheja – 02245 – Program Verification

§ Recall that the frame must be self-framing, which is not the case here
§ Making the frame self-framing yields a valid (but vacuous) proof
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Framing for method calls

§ Frame rule enables framing without modifies clauses
§ A method may modify only heap locations to which it has permission

Christoph Matheja – 02245 – Program Verification

method set(p: Ref, v: Int)
requires acc(p.f)
ensures acc(p.f) && p.f == v

{
p.f := v

}

// assume we have acc(x.f) 

set(x, 5)
assert x.f == 5

// assume we have acc(x.f) && acc(y.f)
assume y.f == 7
set(x, 5)
assert x.f == 5 && y.f == 7



42

method set(p: Ref, v: Int)
requires acc(p.f)
ensures acc(p.f) && p.f == v

{

p.f := v

}

p

// assume we have acc(x.f) && acc(y.f)
assume x.f == 2 && y.f == 7

set(x, 5)

assert x.f == 5 && y.f == 7

?

7

x

y
7

2

Permission transfer

Christoph Matheja – 02245 – Program Verification

p

?

7

x

y
7

5

Framing!

?
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Permission transfer for method calls

§ Permissions are held by method executions or loop iterations
§ Calling a method transfers permissions from the caller to the callee (according to 

the method precondition)
§ Returning from a method transfers permissions from the callee to the caller 

(according to the method postcondition)
§ Residual permissions are framed around the call

Christoph Matheja – 02245 – Program Verification
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Framing for loops

Christoph Matheja – 02245 – Program Verification

// assume we have acc(x.f) 
x.f := 0

while (x.f < 10) 
invariant acc(x.f)

{
x.f := x.f + 1

}

// assume we have acc(x.f) && acc(y.f)
x.f := 0
y.f := 7
while (x.f < 10) 
invariant acc(x.f)

{
x.f := x.f + 1

}
assert y.f == 7
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Permission transfer for loops

§ Permissions are held by method executions or loop iterations
§ Entering a loop transfers permissions from the enclosing context to the loop 

(according to the loop invariant)
§ Leaving a loop transfers permissions from the loop to the enclosing context 

(according to the loop invariant)
§ Residual permissions are framed around the loop

Christoph Matheja – 02245 – Program Verification
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Permission transfer: inhale and exhale operations
§ inhale P means:

- obtain all permissions required by assertion P
- assume all logical constraints

§ exhale P means:
- assert all logical constraints
- check and remove all permissions required by assertion P
- havoc any locations to which all permission is lost

Christoph Matheja – 02245 – Program Verification

inhale acc(x.f) && x.f == 2

?

7

x

y
7

2

exhale acc(x.f) && x.f == 2

?

7

x

y
7

2
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Encoding of method bodies and calls

§ Encoding without heap and globals

- Body

- Call

Christoph Matheja – 02245 – Program Verification

method foo() returns (…)
requires P
ensures Q

{ S }

assume P
// encoding of S
assert Q

x := foo()

assert P[…]
havoc x
assume Q[…]

§ Encoding with heap

- Body

- Call

inhale P
// encoding of S
exhale Q

exhale P[…]
havoc x
inhale Q[…]

§ inhale and exhale are permission-aware analogues of assume and assert



§ exhale P means:
- assert all logical constraints
- check and remove all permissions required by P
- havoc (reset) any locations to which all permission is lost

§ Write an example that demonstrates that omitting the havoc from the exhale 
encoding would be unsound 

Christoph Matheja – 02245 – Program Verification

Exercise: definition of exhale



§ exhale P means:
- assert all logical constraints
- check and remove all permissions required by P
- havoc (reset) any locations to which all permission is lost

§ Write an example that demonstrates that omitting the 
havoc from the exhale encoding would be unsound 
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Solution: definition of exhale

§ Before the call, we have acc(x.f) && x.f == 5
§ exhale without havoc would retain x.f == 5
§ We assume x.f == 0 through the method call
§ We reached a contradiction!

method reset(p: Ref)
requires acc(p.f)  
ensures acc(p.f) && p.f == 0

{
p.f := 0

}

var x: Ref
inhale acc(x.f) && x.f == 5
reset(x)
assert x.f == 5  // would verify
assert false // would verify
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Encoding of loops

§ Reminder: encoding without heap
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while(b)
invariant I

{ S }

assert I
havoc targets
assume I
if(*) {
assume b
// encoding of S
assert I
assume false

} else {
assume !b

}

§ Encoding with heap

exhale I
havoc targets
inhale I
if(*) {
assume b
// encoding of S
exhale I
assume false

} else {
assume !b

}
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Encoding of allocation
§ new-expression specifies the 

relevant fields

§ Encoding chooses an arbitrary 
reference and inhales permissions 
to relevant fields
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x := new(f, g)

var x: Ref
inhale acc(x.f) && acc(x.g)

§ Incomplete information about 
freshness of new object

x := new(f)
y := new(f)
assert x != y

method foo(y: Ref)
{
var x: Ref
x := new(f)
assert x != y

}



§ Implement, specify, and verify a class for 
bank accounts with the following methods:
§ create returns a fresh account with initial 

balance 0
§ deposit deposits a non-negative amount to an 

account
§ transfer transfers a non-negative amount 

between two accounts
§ Account balances are integers.

§ Verify the client program on the right.
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Exercise: working with permissions 
method client()
{
var x: Ref
var y: Ref
var z: Ref
x := create()
y := create()
z := create()
deposit(x, 100)
deposit(y, 200)
deposit(z, 300)
transfer(x, y, 100)
assert x.bal == 0
assert y.bal == 300
assert z.bal == 300

}

è 07-account.vpr



Solution: working with permissions
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method transfer(
from: Ref, to: Ref, amount: Int)

requires acc(from.bal) && acc(to.bal)
requires 0 <= amount && amount <= from.bal
ensures acc(from.bal) && acc(to.bal)
ensures to.bal == old(to.bal) + amount
ensures from.bal == old(from.bal) - amount

{
to.bal := to.bal + amount
from.bal := from.bal - amount

}

field bal: Int

method create() returns (n: Ref) 
ensures acc(n.bal) && n.bal == 0

{
n := new(bal)
n.bal := 0

}

method deposit(to: Ref, amount: Int)
requires acc(to.bal) && 0 <= amount
ensures acc(to.bal)
ensures to.bal == old(to.bal) + amount

{  
to.bal := to.bal + amount

}
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Verifying memory safety
§ Memory safety is the absence of errors related to memory accesses, such as, 

null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-
of-bounds accesses, double free, etc.

§ Using permissions, Viper verifies memory safety by default
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var x: Ref
x.f := 5

var x: Ref
x := null
x.f := 5

method free(p: Ref)
requires acc(p.f) 

free(x)
free(x)

free(x)
x.f := 5

model de-allocation
via method call

See module 8 for arrays

è 08-memory-safety.vpr
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Challenges revisited
Heap data structures pose three major challenges for sequential verification 

§ Reasoning about aliasing
- Permissions and separating conjunction

§ Framing, especially for dynamic data structures
- Sound frame rule, but no support yet for unbounded data structures

§ Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races
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Objects and the heap

1. Heap model

2. Reasoning about objects and references

3. Ownership and access permissions

4. Encoding
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Heaps
§ Encode references and fields 

§ Heaps map references and field names to values

§ Represent the program heap as one global variable
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type Ref           // type for references
const null: Ref    // null references

type Field T       // polymorphic type for field names

type HeapType = Map<T>[(Ref, Field T), T]    // polymorphic map

field f: Int
field g: Ref

const f: Field int
const g: Field Ref

var Heap: HeapType
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Permissions and field access
§ Permissions are tracked in a global permission mask

§ Convention: ¬Mask[null, f] for all fields f

§ Field access

- Field access requires permission!
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type MaskType = Map<T>[(Ref, Field T), bool]
var Mask: MaskType

v := x.f

v := Heap[x,f]

x.f := E

Heap[x,f] := E
assert Mask[x,f]
v := Heap[x,f]

assert Mask[x,f]
Heap[x,f] := E
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Inhale
§ inhale P means:

- obtain all permissions required by assertion P
- assume all logical constraints

§ Encoding is defined recursively over the structure of P

§ The encoding also asserts that E is well-defined (omitted here)
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inhale E assume [[E]]

inhale acc(E.f)
Mask[[[E]],f] := true

inhale E => P if([[E]]) { [[inhale P]] }

inhale P && Q [[inhale P]]; [[inhale Q]]

Reaching more than full 
permission goes to magic

Separating conjunction: 
add sum of permissions

assume ¬Mask[ [[E]], f ]
Mask[ [[E]], f ] := true

[[.]] encoding

è 09-inhale.vpr



60

Exhale (1st attempt)
§ exhale P means:

- assert all logical constraints
- check and remove all permissions required by assertion P
- havoc any locations to which all permission is lost

§ Encoding is defined recursively over the structure of P

§ The encoding also asserts that E is well-defined (omitted here)
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exhale E assert [[E]]

exhale acc(E.f) assert Mask[ [[E]], f ]
Mask[ [[E]], f ] := false
havoc Heap[ [[E]], f ]

exhale E => P if([[E]]) { [[exhale P]] }

exhale P && Q [[exhale P]]; [[exhale Q]]
Separating conjunction: 
remove sum of permissions

havoc e.g. by assigning to a 
fresh variable
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Example
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inhale acc(x.f) && x.f == 5

assume ¬Mask[x,f]
Mask[x,f] := true

assert Mask[x,f]  // well-definedness check
assume Heap[x,f] == 5

exhale acc(x.f) && x.f == 5

assert Mask[x,f]
Mask[x,f] := false
havoc Heap[x,f]

assert Mask[x,f]  // well-definedness check
assert Heap[x,f] == 5
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Exhale (fixed)
§ Conceptually, permissions should be removed after checking logical constraints

§ Adapt encoding
- Check well-definedness against mask at the beginning of the exhale
- Delay havoc  until the end of the exhale
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exhale P

var oldMask: MaskType
var newHeap: HeapType
oldMask := Mask
[[exhale P]] // like before, but no havoc and with 

well-definedness check on oldMask
assume forall y,g :: Mask[y,g] ==> newHeap[y,g] == Heap[y,g]
Heap := newHeap // effectively havocs all locations to which 

permission was lost



§ Encode the operation (on paper, not using Viper)
exhale acc(x.f) && x.f == 5

with the fixed encoding.
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Exercise: encoding of exhale



§ Encode the operation (on paper, not using Viper)
exhale acc(x.f) && x.f == 5

with the fixed encoding.
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Solution: encoding of exhale

var oldMask: MaskType
var newHeap: HeapType
oldMask := Mask

assert Mask[x,f]
Mask[x,f] := false

assert oldMask[x,f]  // well-definedness check
assert Heap[x,f] == 5

assume forall y,g :: Mask[y,g] ==> newHeap[y,g] == Heap[y,g]
Heap := newHeap
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Challenges revisited
Heap data structures pose three major challenges for sequential verification 

§ Reasoning about aliasing
- Permissions and separating conjunction

§ Framing, especially for dynamic data structures
- Sound frame rule, but no support yet for unbounded data structures

§ Writing specifications that preserve information hiding
- Not solved, but see next module

And additional challenges for concurrent programs, e.g., data races
- Permissions are an excellent basis, but see later
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