
1

VERIFICATION TACTICS
02245 – Module 6

Christoph Matheja – 02245 – Program Verification

2

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers

we are here

3

The language PL5

Christoph Matheja – 02245 – Program Verification

set of FOL formulas

PL0

SMTLIB-2 code

unsat sat

PL1 (loops)

MVLPL2 (procedures)

PL3 (domains)

PL4 (built-in types)

PL5 (functions)

start here

4Christoph Matheja – 02245 – Program Verification

Example – summing values in a binary tree
method client() {

var t: Tree := node(
node(leaf(3), leaf(17)),
leaf(22)

)
assert sum(t) == 42

}

function sum(t: Tree): Int

domain Tree {
// ...

}

Previous exercise: how to define sum?

Try out variants: 0X-tree-sum.vpr

t

t2 22

3 17

5

§ All approaches are logically equivalent

§ Most theories with quantifiers are
undecidable

è To effectively use automated verifiers,
we need to understand how tools deal
with quantifiers

Christoph Matheja – 02245 – Program Verification

Example – summing values in a binary tree
method client() {

var t: Tree := node(
node(leaf(3), leaf(17)),
leaf(22)

)
assert sum(t) == 42

}

function sum(t: Tree): Int

domain Tree {
// ...

}

Previous exercise: how to define sum?

Try out variants: 0X-tree-sum.vpr

t

t2 22

3 17

Approach

1 implement function

2 abstract function with postcondition

3 definitional axiom using Tree functions

4 manually written definitional axioms

5 implement function + assertion in client

6

§ Excursion: quantifiers

§ Lemmas & proofs

§ Hands-on program verification

Christoph Matheja – 02245 – Program Verification

Outline: verification tactics

7

§ Our problem: Is the FO formula F unsatisfiable?
- equivalent: is !F satisfiable?

§ To prove forall x :: G unsat, we can try out
all possible candidate values until we find one
value v such that G[x/v] becomes unsat

§ Issue 1: How do we choose good candidates?
- most values may be irrelevant for our VCs

§ Issue 2: When do we give up trying more values?
- Logics with quantifiers are often undecidable
- Better to quickly report that we cannot verify a

problem than trying out values indefinitely

Christoph Matheja – 02245 – Program Verification

Universal quantifier instantiation
Verification condition:
BP && !WP(S, true) unsat

forall x :: G unsat

iff !(forall x :: G) sat

iff exists x :: !G sat

iff for some value v, !G[x/v] sat

iff for some value v, G[x/v] unsat

forall x :: G
<==>
G[x/v1] && ... && G[x/vn] &&

&& forall x :: G

8

§ Due to undecidability, all approaches are incomplete
- May return unknown or not terminate

§ Model-based quantifier instantiation (MBQI)
- Focuses on proving satisfiability
- Possibly returns unknown instead of unsat
è Not well-suited for our verification problem

§ Heuristic quantifier instantiation with E-matching
- Focuses on proving unsatisfiability
- Possibly returns unknown instead of sat
- We may not get a counterexample if verification fails
è Most common approach used by verification tools

Christoph Matheja – 02245 – Program Verification

Universal quantifier instantiation – approaches

Verification condition:
BP && !WP(S, true) unsat

9

§ Main idea: try out a subset V of all values
- return unsat if G[x/v] is unsat for some v in V
- return unknown if G[x/v] is sat for all v in V

§ Hypothesis: V should contain...
- all ground terms

• terms without quantifier-bound variables
• “expressions used in program or specification”
• E.g., 0, 1+2, x+2 (where x is a free variable)

- function applications to ground terms
• “unfolding of function calls”
• E.g., fib(fib(1))

§ Asserting ground terms can improve quantifier instantiation è 05-tree-sum.vpr

Christoph Matheja – 02245 – Program Verification

Heuristic quantifier instantiation

forall x :: x in V ==> G unsat

iff for some v in V, G[x/v] unsat

implies forall x :: G unsat

Structure of our VCs

BP !WP(...)
&&

many ground termsfew ground terms

10

Input: FO formula F && forall x :: G

Output: unsat or unknown

Algorithm:

F(0) := F

for i = 0, 1, 2, ...

(Choose) pick a ground term t in F(i)
or G such that F(i) does not contain a
conjunct equal to G[x/t]; return
unknown if no such t exists

(Instantiate) F(i+1) := G[x/t] && F(i)

(Check) If F(i+1) is unsat, then
return unsat

Christoph Matheja – 02245 – Program Verification

Heuristic quantifier instantiation loop (for one quantifier)
h(0) == 1 &&
forall x :: h(x) == 1+h(x-1) && h(x) < 3

F(0) := h(0) == 1

i = 0: choose t = 1
G[x/t] = 1 + h(0) && h(1) < 3
Instantiate: F(1) := G[x/t] && F(0)
Check: F(1) is sat è continue

i = 1: choose t = 1 + h(0) = 2
G[x/t] = h(2) == 1+h(2-1) && h(2) < 3
Instantiate: F(2) := G[x/t] && F(1)
= h(2) == 1+h(2-1) && h(2) < 3
&& h(1) == 1 + h(0) && h(1) < 3
&& h(0) == 1

F(2) unsat è return unsat

11

§ Problems with heuristic
- Formulas may have exponentially many ground terms
- Function applications admit infinitely many ground terms

è Let user determine relevant ground terms

§ A pattern (or trigger) is a term p such that
- p contains all bound variables in the scope of the quantifier
- p contains at least one non-constant uninterpreted function
- p contains at most constant interpreted function

§ Consider only ground terms t that e-match pattern p, that is,
we can find some ground term t’ provably equal to p[x / t]

Christoph Matheja – 02245 – Program Verification

E-matching

Predicates
P ::= ... | forall x:T :: { p } P

How can we instantiate the above?

x == f(7) && g(x) == 3 &&
forall y: Int ::
{ g(f(y)) } g(f(y)) > 5

12

§ Problems with heuristic
- Formulas may have exponentially many ground terms
- Function applications admit infinitely many ground terms

è Let user determine relevant ground terms

§ A pattern (or trigger) is a term p such that
- p contains all bound variables in the scope of the quantifier
- p contains at least one non-constant uninterpreted function
- p contains at most constant interpreted function

§ Consider only ground terms t that e-match pattern p, that is,
we can find some ground term t’ provably equal to p[x / t]

Christoph Matheja – 02245 – Program Verification

E-matching

Predicates
P ::= ... | forall x:T :: { p } P

How can we instantiate the above?

x == f(7) && g(x) == 3 &&
forall y: Int ::
{ g(f(y)) } g(f(y)) > 5

p[x/t] = g(f(7)) = 3 ç t’ appears above
è instantiate g(f(7)) > 5

13

§ Patterns are typically terms in the quantified formulas body, e.g. p = g(x)
- e-match 1: g(1) == 0 and 0 is a ground term
- instantiating f(1) == f(g(1)) makes the whole formula unsatisfiable è return unsat

§ Too restrictive patterns may often yield unknown, e.g. p = g(g(x))
- No e-matching possible è return unknown

§ Too permissive patterns may lead to matching loops, e.g. p = f(x)
- e-match 0, instantiate f(0) == f(g(0))
- e-match g(0), instantiate f(g(0)) == f(g(g(0))), e-match g(g(0)) ...

§ Viper automatically selects (possibly suboptimal) patterns è 0X-tree-sum.vpr

Christoph Matheja – 02245 – Program Verification

Example f(0) != f(1) && g(1) == 0 && f(0) == 1
&& forall x: Int ::{ p } f(x) == f(g(x))

§ Consider axiomatization of 2D
points on the right. We added a
function and an axiom for adding
two points by adding their
components.

§ Try out different triggering
patterns for the axiom on the right
and test them for client below.
Find patterns such that
a) verification succeeds,
b) verification fails, and
c) verification does not terminate.

Christoph Matheja – 02245 – Program Verification

Exercise // file: examples/06-trigger-point.vpr
domain Point {
function cons(x: Int, y: Int): Point
function first(p: Point): Int
function second(p: Point): Int

function add(p: Point, q: Point): Point

axiom {
forall p: Point, q: Point ::
first(add(p,q)) == first(p) + first(q)
&& second(add(p,q)) == second(p) + second(q)

}
// ...

}

method client() {
var x: Point := add(cons(17, 42), cons(3,8))
assert first(x) == 20
assert second(x) == 50

}

a) verification succeeds
{ add(p,q) }

b) verification fails
{ add(add(p,p),q) }

c) verification does not
terminate
{ first(p), first(q) }

Christoph Matheja – 02245 – Program Verification

Solution

// file: examples/06-trigger-point.vpr
domain Point {
function cons(x: Int, y: Int): Point
function first(p: Point): Int
function second(p: Point): Int

function add(p: Point, q: Point): Point

axiom {
forall p: Point, q: Point ::

first(add(p,q)) == first(p) + first(q)
&&
second(add(p,q)) == second(p) + second(q)

}
// ...

}

16

Reasoning about recursive functions è 07-factorial.vpr

Christoph Matheja – 02245 – Program Verification

§ Problem: Recursive functions can
always be unfolded to instantiate new
ground terms

§ There is no natural condition for
stopping the unfolding, even if the
recursive function terminates

§ Consequences:
- Recursive functions lead to matching loops
- SMT solver may never terminate

§ Solution: limit the unfolding depth

function fac(x: Int): Int
{ x <= 1 ? 1 : x * fac(x-1) }

var n: Int; assert fac(n) != 0

function fac(x: Int): Int

axiom forall x: Int ::
fac(x) == (x <= 1 ? 1 : x * fac(x-1))

fac(0) == 1 && fac(n) != 0

fac(1)==1 && fac(0)==1 && fac(n)!=0

fac(fac(1)) == 1 && fac(1) == 1 && ...

fac(fac(fac(1))) == 1 && ...

17

Limited functions è 08-factorial.vpr

Christoph Matheja – 02245 – Program Verification

§ Goal: encode recursive functions such
that they can be unfolded only a
limited number of times

§ Idea: to stop unfolding, call a different
function without a definitional axiom

§ Viper limits recursive functions to one
unfolding è tree-sum-1.vpr

Since fac0 is not constrained by axioms, the
SMT solver can choose a function for fac0
such that the formula becomes unsat

function fac(x: Int): Int
function fac0(x: Int): Int

axiom forall x: Int ::
(x <= 1 ==> fac(x) == 1) &&
(x > 1 ==> fac(x) == x * fac0(x-1))

fac(0) == 1 && fac(n) != 0

fac(1)==1 && fac(0)==1 && fac(n)!=0

fac(fac(1)) == fac(1) * fac0(fac(1)-1)
&& fac(1)==1 && fac(0)==1 && fac(n)!=0

function fac(x: Int): Int
{ x <= 1 ? 1 : x * fac(x-1) }

var n: Int; assert fac(n) != 0

18

§ Since limited functions bound the number
of unfoldings, the solver cannot find
proofs that require more unfoldings

§ Can we combine facts to proofs that
would require multiple unfoldings?

Christoph Matheja – 02245 – Program Verification

Improving limited functions è 09-factorial.vpr

function fac(x: Int): Int
{ x <= 1 ? 1 : x * fac(x-1) }

assert fac(1) == 1 // one unfolding

assert fac(2) == 2 // two unfoldings

assert fac(1) == 1
assert fac(2) == 2
// provable with one unfolding each

è fac(1) == 1 && fac(2) == 2 * fac0(2-1)
è fac(1) == 1 && fac(2) == 2 * fac(2-1)
è fac(1) == 1 && fac(2) == 2 * 1
è fac(1) == 1 && fac(2) == 2

19

§ Since limited functions bound the number
of unfoldings, the solver cannot find
proofs that require more unfoldings

§ Can we combine facts to proofs that
would require multiple unfoldings?

§ Idea: axiomatize fac(x) == fac0(x)
- Problem: may reintroduce matching loop

Christoph Matheja – 02245 – Program Verification

Improving limited functions
function fac(x: Int): Int
{ x <= 1 ? 1 : x * fac(x-1) }

assert fac(1) == 1 // one unfolding

assert fac(2) == 2 // two unfoldings

assert fac(1) == 1
assert fac(2) == 2
// provable with one unfolding each

è fac(1) == 1 && fac(2) == 2 * fac0(2-1)
è fac(1) == 1 && fac(2) == 2 * fac(2-1)
è fac(1) == 1 && fac(2) == 2 * 1
è fac(1) == 1 && fac(2) == 2

axiom {
forall x: Int ::
fac(x) == fac0(x)

}

20

§ Since limited functions bound the number
of unfoldings, the solver cannot find
proofs that require more unfoldings

§ Can we combine facts to proofs that
would require multiple unfoldings?

§ Idea: axiomatize fac(x) == fac0(x)
- Problem: may reintroduce matching loop
- Solution: trigger axiom only for function fac(x)

Christoph Matheja – 02245 – Program Verification

Improving limited functions è 10-factorial.vpr

function fac(x: Int): Int
{ x <= 1 ? 1 : x * fac(x-1) }

assert fac(1) == 1 // one unfolding

assert fac(2) == 2 // two unfoldings

assert fac(1) == 1
assert fac(2) == 2
// provable with one unfolding each

è fac(1) == 1 && fac(2) == 2 * fac0(2-1)
è fac(1) == 1 && fac(2) == 2 * fac(2-1)
è fac(1) == 1 && fac(2) == 2 * 1
è fac(1) == 1 && fac(2) == 2

axiom {
forall x: Int :: { fac(x) }
fac(x) == fac0(x)

}

21

§ To work around unfolding limits, it is
often sufficient to mention a ground
term that is required for the proof

Christoph Matheja – 02245 – Program Verification

Working with limited functions è 11-factorial.vpr

function fac(x: Int): Int
{ x <= 1 ? 1 : x * fac(x-1) }

var n: Int := fac(1)
// ground term fac(1) is available
assert fac(2) == 2

assert fac(2) == 2

22

§ Our problem: Is the FO formula F unsatisfiable?
- equivalent: is !F satisfiable?

§ To prove exists x :: G unsat, we have to show
that G[x/v] becomes unsat for all values v

§ When aiming to prove unsatisfiability, SMT solvers
often struggle with existentials

§ Try to avoid existential quantifiers in specifications

§ If needed, manually instantiate or introduce
existential quantifiers è user-defined lemmas

Christoph Matheja – 02245 – Program Verification

Existential quantifier instantiation è 12-exists.vpr

Verification condition:
BP && !WP(S, true) unsat

exists x :: G unsat

iff !(exists x :: G) sat

iff forall x :: !G sat

iff for all values v, !G[x/v] sat

iff for all values v, G[x/v] unsatassert exists x: Int :: x == 0

23

§ Excursion: quantifiers

§ Lemmas & proofs

§ Hands-on program verification

Christoph Matheja – 02245 – Program Verification

Outline

24

§ A lemma consists of
- a premise determining whether the lemma can be used
- a conclusion stating what property is guaranteed
- a proof checking that the conclusion indeed always

follows from the premise

§ To apply a lemma, we check its premises and, if
yes, can use its conclusion

§ Lemmas are “subroutines of a larger proof”

Christoph Matheja – 02245 – Program Verification

Lemmas – in mathematics
Lemma 1.
Premise: n >= 0
Conclusion: fac(n) > 0
Proof: by induction on n.

Theorem. For all x > 0,
fac(x) + fac(x) + fac(x) > 2.

Proof.
Let x > 0. Then, since x >= 0,
Lemma 1 yields fac(x) > 0.
Hence,
fac(x) + fac(x) + fac(x) > 2.

25

§ SMT solver does not notice that fac(x) > 0
- No automatic proofs by induction
- Could be added as postcondition to fac(x)

§ We may not want to add all needed
properties as axioms (of functions)
- Some properties might be specialized and are only

useful in very specific cases
- Many axioms might slow down proof generation

Christoph Matheja – 02245 – Program Verification

Why do we need lemmas for program verification?
function fac(x: Int): Int {
x <= 1 ? 1 : x * fac(x-1)

}

method client(x: Int)
returns (y: Int)
requires x > 0
ensures y > 2

{
var z: Int := fac(x)

y := z + z + z
}

è 13-factorial-positive.vpr

26

§ Lemmas are ghost methods
- They may not affect program execution
- They can be removed from production code

§ Method body represents a correctness proof
- Abstract methods are trusted (unproven)

§ By invoking a lemma, we learn its postcondition
only for the supplied the arguments

Christoph Matheja – 02245 – Program Verification

Lemmas – as ghost methods

lemma(x,y)
assert Conclusion(x,y)

method lemma(<arguments>)
requires Premise
ensures Conclusion

{
Proof

}

27

§ By invoking a lemma, we learn its postcondition
only for the supplied the arguments

§ To use a lemma, we just call the method
- Checks that premise holds for supplied arguments
- Guarantees that conclusion holds afterward

Christoph Matheja – 02245 – Program Verification

Using a lemma in Viper è 14-factorial-lemma.vpr

method lemma_fac_pos(n: Int)
requires n >= 0
ensures fac(n) > 0

function fac(x: Int): Int {
x <= 1 ? 1 : x * fac(x-1)

}

method client(x: Int)
returns (y: Int)
requires x > 0
ensures y > 2

{
var z: Int := fac(x)
lemma_fac_pos(x)
y := z + z + z

}

we now know fac(x) > 0 we do not know fac(z) > 0

28

Proving lemmas by implementing ghost methods

Christoph Matheja – 02245 – Program Verification

Statement Meaning in proofs
x := e Name an expression
assert P Make a correct statement

(possibly to introduce
ground terms)

assume P Make a (possibly wrong)
assumption

if (b) {S1} else {S2} Case distinction on b
method call Invoke another lemma
recursive method call
(for proofs by induction)

Invoke the induction
hypothesis given by the
lemma’s contract

method lemma_fac_pos(n: Int)
requires n >= 0
ensures fac(n) > 0
// decreases n // variant

{
var v: Int := n; assert v >= 0
// proof by induction on n
if (n == 0) { // base case
assert fac(0) > 0

} else { // induction step
assert n-1 >= 0
// invoke I.H.
assert n-1 < v
lemma_fac_pos(n-1)
assert fac(n-1) > 0

}
}

è 15-lemma-proof.vpr

29

Why we need termination proofs for lemmas

Christoph Matheja – 02245 – Program Verification

method lemma_fac_pos(n: Int)
requires n >= 0
ensures fac(n) > 0

{

if (n == 0) {

} else {

lemma_fac_pos(n)
}

} unsound proof!

illegal use of I.H.: argument is not < n

Induction hypothesis
(I.H.): for all m < n, the triple

{ m >= 0 }
lemma_fac_pos(m)
{ fac(m) > 0 }

is valid.

induction base: claim holds for n == 0

Claim: for all integers n, the
following triple is valid:

{ n >= 0 }
lemma_fac_pos(n)
{ fac(n) > 0 }

è 15-lemma-proof.vpr

30

§ For terminating proof
programs, calls always
decrease some variant

è only valid proofs verify

Christoph Matheja – 02245 – Program Verification

Why we need termination proofs for lemmas

method lemma_fac_pos(n: Int)
requires n >= 0
ensures fac(n) > 0

{

if (n == 0) {

} else {

lemma_fac_pos(n)
}

}

illegal use of I.H.: argument is not < n

Induction hypothesis
(I.H.): for all m < n, the triple

{ m >= 0 }
lemma_fac_pos(m)
{ fac(m) > 0 }

is valid.

induction base: claim holds for n == 0

Claim: for all integers n, the
following triple is valid:

{ n >= 0 }
lemma_fac_pos(n)
{ fac(n) > 0 }

var v: Int := n; assert v >= 0

assert n < v

variant does not decrease
è unsound proof fails

è 15-lemma-proof.vpr

Exercise

§ Use a lemma to verify the
following client:

§ Bonus: prove the following
lemma (including termination):

Christoph Matheja – 02245 – Program Verification

// file: 16-exercise.vpr
function foo(x: Int): Int {
x <= 0 ? 1 : foo(x - 2) + 3

}

method client(r: Int) {
var s: Int := foo(r)
var t: Int := foo(s)

assert 2 <= t - r
}

// file: 17-commutativity.vpr
function X(n: Int, m: Int): Int
requires n >= 0 && m >= 0 {
m == 0 ? 0 : n + X(n, m-1)

}

method lemma_X_commutative (n: Int, m: Int)
requires n >= 0 && m >= 0
ensures X(n, m) == X(m, n) {
// TODO: show commutativity of
// multiplication function X

}

Solution

§ Use a lemma to verify the
following client:

§ Prove the following lemma
(including termination):

Christoph Matheja – 02245 – Program Verification

function foo(x: Int): Int {
x <= 0 ? 1 : foo(x - 2) + 3

}
method client(r: Int) {
var s: Int := foo(r)
var t: Int := foo(s)
// ...
assert 2 <= t - r

}
// ...

function X(n: Int, m: Int): Int
requires n >= 0 && m >= 0 {
m == 0 ? 0 : n + X(n, m-1)

}

method lemma_X_commutative (n: Int, m: Int)
requires n >= 0 && m >= 0
ensures X(n, m) == X(m, n) {
// ...

}

33

§ Sometimes the solver may be unable to
deal with parts of a predicate
- Existential quantifiers, very complex predicates

§ We can ”hide” such predicates in a
boolean function with no definitional axiom
- The solver has nothing to unfold
- Function calls are kept around

§ We can then introduce abstract lemmas to
- unfold the predicate: make its definition visible,

possibly with concrete values for existentials
- fold the predicate: store its definition behind a

call, possibly abstracting concrete values

Christoph Matheja – 02245 – Program Verification

Lemmas for existential quantifiers è 18-exists-lemmas.vpr

function divides(x:Int, y: Int): Bool
requires x >= 0 && y >= 0
//ensures result == exists z:Int ::
// z >= 0 && x * z == y

method divides_fold(x: Int,
y: Int, z: Int)

requires x > 0 && y > 0
requires z >= 0 && x * z == y
ensures divides(x, y)

method divides_unfold(x: Int, y: Int)
returns (z: Int)
requires x > 0 && y > 0
requires divides(x, y)
ensures z >= 0 && x * z == y

34

§ Excursion: quantifiers

§ Lemmas & proofs

§ Hands-on program verification

Christoph Matheja – 02245 – Program Verification

Outline

Rules:

§ There are four verification challenges, each with a code skeleton

- You can work on them in groups and in any order

§ Some challenges are hard è you can always ask for hints, help, or feedback

§ Do not modify executable source code unless the task is to implement something

- You can always add ghost code, assertions, and annotations as long as you can justify their

soundness (so assume false is not allowed, even though it might be useful on the way...).

Christoph Matheja – 02245 – Program Verification

Remaining goal for today: verify programs J

§ Skeleton file: challenges/mirror-tree.vpr

§ Tasks:
a. Implement a function that mirrors binary trees, that is, swaps the left and right children of

every node in a tree.

b. Prove that mirroring a tree does not change the tree’s size.

c. Prove the provided client to show that mirroring an arbitrary tree twice yields the original tree.

Christoph Matheja – 02245 – Program Verification

Challenge 1: Mirroring binary trees

§ Skeleton file: challenges/insertion-sort.vpr

§ The skeleton implements a recursive variant of insertion sort

§ Tasks:
a. Implement the function sorted stating that a sequence is sorted in ascending order.

b. Prove the given lemma to check if your implementation is sensible.

c. Prove (wrt. partial correctness) that the sorting method returns a sorted sequence.

d. Prove (wrt. partial correctness) that the sorting method sorts the input sequence.

e. Prove that the sorting method terminates.

Christoph Matheja – 02245 – Program Verification

Challenge 2: Insertion sort

§ Skeleton file: challenges/euclid.vpr

§ Euclid’s algorithm is a well-known iterative technique for computing the greatest
common divisor (GCD) of two positive integers.

§ Tasks:
a. Define a function that returns the GCD of two positive integers.

b. Prove that Euclid’s algorithm indeed returns the GCD of its two arguments.

c. Prove that Euclid’s algorithm terminates.

Christoph Matheja – 02245 – Program Verification

Challenge 3: Euclid’s algorithm

§ Skeleton file: challenges/election.vpr

§ The skeleton implements a method that takes a list of votes and attempts to
return the candidate who received an absolute majority of votes (if one exists).
- The algorithm is quite neat, since it runs in linear time.

§ Tasks:
- Verify (wrt. partial correctness) that the search method returns the winner if there is one.

• Note: we use ghost variables to indicate who should be the winner
- Show that the search method terminates.

Christoph Matheja – 02245 – Program Verification

Challenge 4: Determining the (clear) winner of an election

< Discussion >

Christoph Matheja – 02245 – Program Verification

41

What next

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers after the break

Feedback and muddy points

Christoph Matheja – 02245 – Program Verification

https://forms.gle/9rFHYPHFe8nGhXLx5

https://forms.gle/9rFHYPHFe8nGhXLx5

