
1

ADVANCED DATATYPES
02245 – Module 5

Christoph Matheja – 02245 – Program Verification

2

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers

3

§ Mathematical data types

§ User-defined functions

§ Function encoding

Christoph Matheja – 02245 – Program Verification

Outline

4

§ Our language so far supports only three types

§ Many functional languages feature mathematical data types
- lists, tuples, sets, trees, etc.

§ Subset of abstract data types (ADTs)
- What are values of a type?
- What are operations on data of a type?
- immutable, no side-effects
è“programming & specification vocabulary”

§ Mathematical data types are for specifying imperative code è module 8
- “Array sort leaves the multiset of elements unchanged”
- “All implementations of Java’s List interface store a sequence of elements”

Christoph Matheja – 02245 – Program Verification

Mathematical data types
Types
T ::= Bool | Int | Rational

domain Set {
function empty(): Set
function add(s: Set, x: Int): Set
function contains(s: Set, x: Int): Bool
function union(s: Set, t: Set): Set
function is_empty(s: Set): Bool

}

5

§ We extend our language to support
commonly-used data types

§ The built-in data types
- are generic
- represent immutable, mathematical values
- represent finite collections
- are available in Viper

§ We use Viper’s expression syntax
- See tutorial for other data types
- https://viper.ethz.ch/tutorial

Christoph Matheja – 02245 – Program Verification

Common mathematical data types (PL4)
Types
T ::= Bool | Int | Rational | Set[T]

| Seq[T] | Multiset[T] | Map[T, T]

Expressions
e ::= ... as before

| Set[T]() empty set
| Set(!e) set literal
| e union e
| e intersection e
| e setminus e
| e subset e
| e in e membership
| |e| cardinality

https://viper.ethz.ch/tutorial

6

Example

Christoph Matheja – 02245 – Program Verification

method collect(s: Seq[Int]) returns (res: Set[Int])
ensures forall j: Int :: 0 <= j && j < |s| ==> s[j] in res
ensures forall x: Int :: x in res ==> x in s

{
res := Set[Int]()
var i: Int := 0
while (i < |s|)
invariant 0 <= i && i <= |s|
invariant forall j: Int :: 0 <= j && j < i ==> s[j] in res
invariant forall x: Int :: x in res ==> x in s

{
res := res union Set(s[i])
i := i + 1

}
}

Set operations

Sequence operations

7

§ Every domain declares a new
type and associated functions

§ Corresponds to a axiomatizing
a new theory

Christoph Matheja – 02245 – Program Verification

Custom data types (PL3)

domain Point {
function cons(x: Int, y: Int): Point
function first(p: Point): Int
function second(p: Point): Int

axiom destruct_over_construct {
forall x: Int, y: Int ::
first(cons(x,y)) == x && second(cons(x,y)) == y

}
}

Types
T ::= Bool | Int | Rational

| <name> defined types

Expressions
e ::= ... as before

| <name>(e) function call

Declarations
D ::= ... as before

| domain <name> { define new type
(function <name>(x:T): T)* define function
(axiom <name> { P })* define axiom

}

8

Example: binary trees with values at leafs

Christoph Matheja – 02245 – Program Verification

// Java-like code
interface Tree {
Tree leaf(int value);
Tree node(Tree left, Tree right);

bool is_leaf();
Tree left();
Tree right();
int value();
}

domain Tree {

function leaf(value: Int): Tree
function node(left: Tree, right: Tree): Tree

function is_leaf(t: Tree): Bool
function value(t: Tree): Int
function left(t: Tree): Tree
function right(t: Tree): Tree

axiom value_over_leaf {
forall x:Int :: value(leaf(x)) == x

}

axiom right_over_node {
forall l:Tree, r:Tree :: right(node(l, r)) == r

}

// ... (see 02-tree.vpr)

}

var t: Tree := node(
node(leaf(3), leaf(17)),
leaf(22)

)
assert !is_leaf(t)
var t2: Tree := right(left(t))
assert value(t2) == 17

§ The file 03-trees.vpr axiomatizes
binary trees with integer values stored
in leafs.

§ Extend the Tree domain by a function
size that takes a Tree and returns the
number of leafs in the tree.

§ Extend the Tree domain by a function
sum that takes a Tree and returns the
sum of all values stored in the tree.

§ Test your domain against the following
client (also found in the file but
commented out)

Christoph Matheja – 02245 – Program Verification

Exercise

method client() {
var t: Tree
t := node(

node(
leaf(3),
leaf(17)

),
leaf(22)

)

assert sum(t) == 42
assert size(t) == 3

}

15

Encoding of custom data types

Christoph Matheja – 02245 – Program Verification

§ We encode custom data types into
SMT by axiomatizing them
- new type è uninterpreted sort
- new operation è uninterpreted function
- new axiom è assert axiom (add to BP)

(declare-sort Set)

(declare-const empty Set)
(declare-fun card (Set) Int)
; ...

(assert (= (card empty) 0)) ; axiom
; ...

Verification condition:
BP ==> P ==> WP(S, Q) valid

Background Predicate:
conjunction of all axioms

domain Set {
function empty(): Set
function card(s: Set): Int
// ...

axiom card_empty { card(empty()) == 0 }
// ...

}

16

Encoding of built-in data types

Christoph Matheja – 02245 – Program Verification

§ Built-in data types define domains
with carefully crafted axioms and
more convenient syntax

§ Encoding: PL4 è PL3

§ Generics can be handled via
monomorphization: generate a
separate axiomatization for every
instance of a generic type T that is
used in a given program

Types

T ::= ...
| Set[T]

Expressions
e ::= ... as before

| Set[T]() empty set
| |e| cardinality

domain IntSet {
function empty(): IntSet
function card(s: IntSet): Int
// ...

axiom card_empty { card(empty()) == 0 }
// ...

}

T ::= Int

17

§ Mathematical data types

§ User-defined functions

§ Function encoding

Christoph Matheja – 02245 – Program Verification

Outline

18

Writing stronger specifications

Christoph Matheja – 02245 – Program Verification

§ The built-in types and operators allow one
to specify many interesting properties

§ However, there are many methods whose
behavior cannot be specified (easily)

§ It is often useful to define additional
mathematical vocabulary to specify the
intended behavior

è Axiomatizations have a fixed pattern

è Use functional programs

method fac(n: Int) returns (res: Int)
requires 0 <= n
ensures res == facDef(n)

{
res := 1
var i: Int := 1

while(i <= n) {
res := res * i
i := i + 1

}
}

domain X {
function facDef(n: Int): Int
axiom {
forall n: Int ::
(n <= 1 ==> facDef(n) == 1) &&
(n > 1 ==> facDef(n)

== n * facDef(n-1))
}}

19

User-defined functions (PL5)

Christoph Matheja – 02245 – Program Verification

§ Functions abstract over expressions
- can appear in specifications
- can be recursive
- can be uninterpreted (no definition)

§ Model of mathematical functions
- no side-effects
- must always terminate (not checked by Viper!)
- deterministic
- well-defined for every input (total)

function facDef(n: Int): Int
{
n <= 1 ? 1 : n * facDef(n-1)

}

Expressions
e ::= ... | <name>(!e)

Declarations
D ::= ...

| function <name>(x: T): T
(requires P)*
(ensures Q)*
({ e })?

20

Reasoning about function calls

Christoph Matheja – 02245 – Program Verification

§ Functions generally do not require a specification
- Postconditions are typically equal the function definition

§ We reason about calls by using the
function definition

§ In contrast to methods, reasoning about
function calls is not modular

§ Non-modularity has drawbacks
- All callers need to be re-verified when a function definition changes
- But mathematical vocabulary is typically more stable

function facDef(n: Int): Int
{
n <= 1 ? 1 : n * facDef(n-1)

}

x := facDef(1)
assert x == 1

21

Partial functions

Christoph Matheja – 02245 – Program Verification

§ Many operations are inherently partial functions
- Meaningful only on a subset of the possible arguments
- Example: division by zero

§ Option 1: construct artificially total functions
- Often leads to awkward function definitions
- May cause misleading error messages

§ Option 2: equip functions with preconditions
- Needs to be checked for every function call
- Also called “well-definedness conditions”
- Supported by Viper

function facDef(n: Int): Int
{ n <= 1 ? 1 : n * facDef(n-1) }

x := facDef(-1)

function facDef(n: Int): Int
requires 0 <= n

{ n <= 1 ? 1 : n * facDef(n-1) }

x := facDef(-1)

Define a function fib(n) that yields the nth
Fibonacci number.

fib(0) = 0
fib(1) = 1
fib(n+2) = fib(n+1) + fib(n)

Provide a suitable precondition.

Verify that the method on the right computes
the nth Fibonacci number.

Hint: You can use the skeleton 07-fib.vpr

Christoph Matheja – 02245 – Program Verification

Exercise
method iter_fib(n: Int) returns (res: Int)
requires 0 <= n
ensures …

{
res := 0
var i: Int := 0
var next: Int := 1

while (i < n)
invariant …

{
var t: Int := res
res := next
next := t + next
i := i + 1

}
}

24

Function postconditions

Christoph Matheja – 02245 – Program Verification

§ Since reasoning about function calls uses the function definition, functions
typically do not have postconditions

§ But postconditions are permitted
- Use keyword result to refer to the returned value

§ When reasoning about function calls, Viper
uses the function definition and the postcondition

§ Postcondition is verified against function definition
- Assumed for recursive calls
- Dangerous when functions do not terminate!

function facDef(n: Int): Int
requires 0 <= n
ensures 1 <= result

{ n <= 1 ? 1 : n * facDef(n-1) }

function f(): Bool
ensures false

{ f() }

x := f()
assert false

25

Use cases for function postconditions

Christoph Matheja – 02245 – Program Verification

§ Abstract functions
- Shortcut for axiomatizing certain functions
- In the absence of a function definition, calls

are verified using only the postcondition

c := sqrt(a*a + b*b)
assert a*a + b*b - c*c < 2*c + 1

function sqrt(n: Int): Int
requires 0 <= n
ensures 0 <= result
ensures result * result <= n &&

n < (result+1) * (result+1)

Encode a choose-statement in Viper, which returns an arbitrary integer,
as an abstract function.
Use your encoding to choose two values. Can you prove that they are
equal or unequal?

27

Use cases for function postconditions

Christoph Matheja – 02245 – Program Verification

§ Automating induction proofs
- SMT solvers are generally not able to

prove properties about recursive functions
using induction

- By declaring a function postcondition, we
provide the necessary induction hypothesis

- Also works with methods è lemmas

function facDef(n: Int): Int
requires 0 <= n

{ n <= 1 ? 1 : n * facDef(n-1) }

assume 0 <= y
x := facDef(y)
assert 1 <= x

function facDef(n: Int): Int
requires 0 <= n
ensures 1 <= result

{ n <= 1 ? 1 : n * facDef(n-1) }

assume 0 <= y
x := facDef(y)
assert 1 <= x // fails without post

function facDef(n: Int): Int
requires 0 <= n
ensures 1 <= result

{
n <= 1

? 1

: n * facDef(n-1)
}

Induction hypothesis:
for all m < n, 1 <= facDef(m)

Induction base:
facDef(0) >= 1, facDef(1) >= 1

Induction step: for n > 1,
facDef(n)
= n * facDef(n-1)
>= facDef(n-1) (n > 1)
>= 1 (by I.H.)

§ Add a function size(t: Tree): Int to the
skeleton 10-trees.vpr that counts the
number of leafs in the tree t.

§ Add a postcondition such that the client in
the code skeleton verifies.

Christoph Matheja – 02245 – Program Verification

Exercise

method client() {
var t: Tree
t := node(node(leaf(3), leaf(17)), leaf(22))
assert size(t) >= 0

}

30

§ Mathematical data types

§ User-defined functions

§ Function encoding

Christoph Matheja – 02245 – Program Verification

Outline

31

Simplified encoding of functions

Christoph Matheja – 02245 – Program Verification

§ User-defined functions are encoded into the background predicate as an
uninterpreted function and a definitional axiom

§ The axiom above is simplified; it omits
- pre- and postconditions
- checks that partial expressions are well-defined

function f(x: T): TT {
E

}

function f(x: T): TT

axiom forall x: T :: f(x) == E

32

Simplified encoding with pre- and postconditions

Christoph Matheja – 02245 – Program Verification

§ Function pre- and postconditions are added to the definitional axiom

§ Sound, but recursive functions may lead to non-termination è next module

§ Note that postconditions are encoded in the axiom
- An inconsistent postcondition can compromise soundness, even if the function is never called!

function f(x: T): TT
requires P
ensures Q

{ E }

function f(x: T): TT

axiom {
forall x: T ::
P ==> f(x) == E && Q[result/f(x)]

}

function f(): Bool
ensures false

{ f() }

x := f()
assert false
x := f()
assert false

33

§ New proof obligation: all expressions are well-defined
- Example: no division by zero
- User-defined functions are are called with arguments that satisfy their preconditions

§ Well-definedness condition DEF: Expr → Pred
- DEF(e) holds in state σ iff expression e can be evaluated in σ

Christoph Matheja – 02245 – Program Verification

Well-definedness conditions for partial expressions

Expression e DEF(e)

0, 1, -3, false, … (constants) true

e1 + e2, e1 < e2, e1 && e2, … DEF(e1) && DEF(2)

e1 / e2 DEF(e1) && DEF(e2) && e2 != 0

foo(e) DEF(e) && “precondition of foo”

e1 ==> e2 DEF(e1) && (e1 ==> DEF(e2))

Short-circuit evaluation

34

§ Every statement first asserts well-definedness of its expressions

§ Alternative: redefine WP
WP(x := e, Q) ::= DEF(e) && Q[x / e]
WP(assert P, Q) ::= DEF(P) && P && Q
WP(assume P, Q) ::= DEF(P) && P ==> Q

...

Christoph Matheja – 02245 – Program Verification

Encoding partial expressions

assume x/y > 1x := f(y) + 2 * z / n

assert DEF(f(y)) && n != 0
x := f(y) + 2 * z / n

assert y != 0
assume x/y > 1

precondition of f(y)

35

Wrap-up

Christoph Matheja – 02245 – Program Verification

§ Writing specifications often requires a
suitable mathematical vocabulary
- added via a background predicate BP that

axiomatizes uninterpreted sorts and functions
- Verification condition: BP ==> P ==> WP(S, Q)

§ Viper’s background predicate collects
axioms from multiple features
- Built-in types and their operations
- User-defined functions
- Custom axiomatizations via domains

function f(n: Int): Int
{ n <= 1 ? 1 : n * f(n-1) }

method collect(s: Seq[Int])
returns (res: Set[Int])
ensures forall j: Int ::
0 <= j && j < |s| ==> s[j] in res

{ ... }

domain Set {
function empty(): Set
function union(s: Set, t: Set): Set
// ...

}

36

§ We now have all ingredients
to implement and verify
sequential programs with
static memory

§ Homework: try to verify some
interesting programs J

§ Next: verification tactics
- Verifier bottlenecks
- Pragmatics
- Verify challenging programs

Christoph Matheja – 02245 – Program Verification

Wrap-up – Building Verifiers

set of FOL formulas

PL0

SMTLIB-2 code

unsat sat

PL1 (loops)

MVLPL2 (procedures)

PL3 (domains)

PL4 (built-in types)

PL5 (functions)

start here

37

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers

we are here

