02245 — Module 5

ADVANCED DATATYPES

=
(=

Y

Christoph Matheja — 02245 — Program Verification

Tentative course outline

Foundational

. Building a Loops and
— — . s —
Reg Soning ST s first verifier procedures
Principles
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models
Front-end
verifiers

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Outline

= User-defined functions

= Function encoding

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Mathematical data types

= Qur language so far supports only three types Types
T ::= Bool | Int | Rational

= Many functional languages feature mathematical data types
- lists, tuples, sets, trees, etc.

domain {
= Subset of (ADTS) function (): Set
- What are values of a type’? function (s: Set, x: Int): Set
- What are on data of a tvpe? function (s: Set, x: Int): Bool
ype: function (s: Set, t: Set): Set
- immutable, no side-effects function (s: Set): Bool
= ‘brogramming & specification vocabulary” }

» Mathematical data types are for specifying imperative code =» module 8
- “Array sort leaves the of elements unchanged”
- "All implementations of Java’s List interface store a of elements”

(=]
—
=

Christoph Matheja — 02245 — Program Verification 4

Y

Common mathematical data types (PL4)

= We extend our language to support Types
commonly-used data types T ::= Bool | Int | Rational | Set[T]
| Seq[T] | Multiset[T] | Map[T, T]
- are generic e 1= ... as before
- represent immutable, mathematical values Set[T]() empty set
- represent finite collections Zezﬁign . set literal

- are available in Viper intersection e

setminus e

e

e
: , . e subset e
= We use Viper's expression syntax o
|

- See tutorial for other data types
- https://viper.ethz.ch/tutorial

in e membership
e| cardinality

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

https://viper.ethz.ch/tutorial

Example

method collect(s: Seq|[Int]) returns (res: Set[Int])

{

ensures forall j: Int :: @ <= j & j < |s| ==> s[i] in res
ensures forall x: Int :: X in res ==> X in s

res := Set[Int]()
var i: Int := 0
while (i < |s])
invariant 0 <= i && i <= |s|

Set operations

Sequence operations

invariant forall j: Int :: 0 <= j & j < i ==> s[j]| in res
invariant forall x: Int :: x in res ==> X in s
{
res := res union Set(s[i])
i:=1+1
}
}
DTU

Y

Christoph Matheja — 02245 — Program Verification

Custom data types

Declarations
D ::= ..

| domain <name> {

function <name>(x:T): T
axiom <name> { P }

define new type

define function
define axiom

domain Point {
function cons(x: Int, y: Int): Point
function first(p: Point): Int -
function second(p: Point): Int

axiom destruct over construct {
forall x: Int, y: Int :: n
first(cons(x,y)) x && second(cons(x,y)) ==

(PL3)

Types

as before T ::= Bool | Int | Rational

| <name> defined types

Expressions
e :

°= oo as before
| <name>(e) function call

Every domain declares a new
type and associated functions

Corresponds to a axiomatizing
a new theory

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Example: binary trees with values at leafs

// Java-like code domain Tree {

interface Tree { function leaf(value: Int): Tree

Tree leaf(int value); . function node(left: Tree, right: Tree): Tree
Tree node(Tree left, Tree right);
function is leaf(t: Tree): Bool

bool is_leaf(); function value(t: Tree): Int
Tree left(); function left(t: Tree): Tree

Tree right(); function right(t: Tree): Tree
int value();
} axiom value over_ leaf {

forall x:Int :: value(leaf(x)) == x

var t: Tree := node() . .
node(leaf(3), leaf(17)), axiom right over node {
leaf(22) forall 1:Tree, r:Tree :: right(node(l, r)) ==r
) }
assert lis leaf(t) // ... (see @2-tree.vpr)
var t2: Tree := right(left(t))
assert value(t2) == 17 }
DTU

Christoph Matheja — 02245 — Program Verification

h

Exercise

» The file 83-trees.vpr axiomatizes

binary trees with integer values stored
in leafs.

Extend the Tree domain by a function
size that takes a Tree and returns the
number of leafs in the tree.

Extend the Tree domain by a function
sum that takes a Tree and returns the
sum of all values stored in the tree.

Test your domain against the following
client (also found in the file but
commented out)

method client() {
var t: Tree
:= node(
node (
leaf(3),
leaf(17)

)5
leaf(22)

)

assert sum(t) =
assert size(t)

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Encoding of custom data types

domain Set {
function empty(): Set

= We encode custom data types into function card(s: Set): Int

SMT by axiomatizing them /)
- new type =» uninterpreted sort _
, _ , axiom card _empty { card(empty()) == 0 }
- new operation =» uninterpreted function s
- new axiom =» assert axiom (add to BP) }

/'

Background Predicate:

conjunction of all axioms (declare-sort Set)

(declare-const empty Set)
(declare-fun card (Set) Int)
Verification condition: 5 oeee

BP ==> P ==> WP(S, Q) valid (assert (= (card empty) @)) ; axiom

J e o o

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Encoding of built-in data types

Types Expressions
» Built-in data types define domains Tooam e 1:= ...
with carefully crafted axioms and | set[T] | set[T]() empty set
: | |el cardinality
more convenient syntax
* Encoding: PL4 = PL3
T ::= Int
= Generics can be handled via domain IntSet {
hization: t function empty(): IntSet
monomorp _Iza |o_n. g.enera €a function card(s: IntSet): Int
separate axiomatization for every /) ..
instance of a generic type T thatis
: : axiom card empty { card(empty()) == 0 }
used in a given program .

}

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

as before

Outline

= Mathematical data types

= Function encoding

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

17

Writing stronger specifications

* The built-in types and operators allow one
to specify many interesting properties

= However, there are many methods whose
behavior cannot be specified (easily)

= |tis often useful to define additional
mathematical vocabulary to specify the
intended behavior

= Axiomatizations have a fixed pattern

= Use

method fac(n: Int) returns (res: Int)

requires O <= n
ensures res == facDef(n)

res := 1
var i: Int := 1

while(i <= n) {
res := res * i
i:=1+ 1
}
}

domain X {
function facDef(n: Int): Int

axiom {
forall n: Int ::
(n <= 1 ==> facDef(n) == 1) &&
(n > 1 ==> facDef(n)
== n * facDef(n-1))

3}

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

18

User-defined functions

= Functions abstract over
- can appear in specifications
- can be recursive
- can be uninterpreted (no definition)

= Model of mathematical functions

no side-effects

must always terminate (not checked by Viper!)
deterministic

well-defined for every input (total)

(PLS)

function facDef(n: Int): Int
{

}

Declarations
D ::= ...
| function <name>(x: T): T
requires P
ensures Q

{e}

Expressions
e 1:= ... <name>(€e)

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

19

Reasoning about function calls

Functions generally do not require a specification
- Postconditions are typically equal the function definition

We reason about calls by using the function facDef(n: Int): Int
function definition {
n<=12?1:n * facDef(n-
}

x := facDef(1)

In contrast to methods, reasoning about assert x o

function calls is not modular

Non-modularity has drawbacks

- All callers need to be re-verified when a function definition changes
- But mathematical vocabulary is typically more stable

1)

O

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

20

Partial functions

» Many operations are inherently partial functions
- Meaningful only on a subset of the possible arguments
- Example: division by zero

» Option 1: construct artificially total functions
- Often leads to awkward function definitions
- May cause misleading error messages

= QOption 2: equip functions with preconditions
- Needs to be checked for every function call

- Also called “well-definedness conditions”
- Supported by Viper

function facDef(n: Int): Int

{n«<=17?1":

x := facDef(-1)

n * facDef(n-1) }

O

function facDef(n: Int): Int
requires 0 <= n

{n«<=17?1":

x := facDef(-1)

n * facDef(n-1) }

X,

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

21

Exercise

Define a function fib(n) that yields the nth method iter_fib(n: Int) returns (res: Int)
Fibonacci number. requires 0@ <= n
ensures

fib(@) = o o

fib(1) = L var i: Int :=

fib(n+2) = fib(n+1l) + fib(n) var next: Int :
Provide a suitable precondition. while (i < n)

invariant ..

Verify that the method on the right computes {
the nth Fibonacci number. var t: Int :

res := next
next := t +
i:=1+1
}
}

Hint: You can use the skeleton 67-fib.vpr

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Function postconditions

» Since reasoning about function calls uses the function definition, functions
typically do not have postconditions

- _ function facDef(n: Int): Int
= But postconditions are permitted requires @ <= n

- Use keyword result to refer to the returned value ensures 1 <= result

{n<=1?1:n* facbef(n-1) }

= When reasoning about function calls, Viper

uses the function definition and the postcondition

function f(): Bool
ensures false
» Postcondition is verified against function definition { f() }

- Assumed for recursive calls

- Dangerous when functions do not terminate! x 1= f()
assert false

v,
g,

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

24

Use cases for function postconditions

function sqgrt(n: Int): Int

= Abstract functions aTEres 6 e T

- Shortcut for axiomatizing certain functions ensures 0 <= result
. _— * -
- In the absence of a function definition, calls ensures :efugesu;:i‘ﬂt;(sti‘i‘tﬂ)
are verified using only the postcondition

c := sqrt(a*a + b*b)

assert a*a + b*b - c*c < 2*c + 1 (:::)

Encode a choose-statement in Viper, which returns an arbitrary integer,
as an abstract function.

Use your encoding to choose two values. Can you prove that they are
equal or unequal?

=

Christoph Matheja — 02245 — Program Verification 25

Y

Use cases for function postconditions

= Automating induction proofs
function facDef(n: Int): Int

- SMT solvers are generally no’F able to. requires © <= n
prove properties about recursive functions SErres | e el

using induction Induction hypothesis:

- By declaring a function postcondition, we for all m < n, 1 <= facDef(m)
provide the necessary induction hypothesis { .
- Also works with methods =» lemmas n < Induction base:

> 1 facDef(®) »>= 1, facDef(l) >=1
function facDef(n: Int): Int

requires 6 <= n : n * facDef(n-1)

ensures 1 <= result }
{n<=121:n* facbDef(n-1) } Induction step: for n > 1,

facDef(n)

Jssume O <= = n * facDef(n-1)

] y >= facDef(n-1) (n > 1)
x := facDef(y) o 1 (by I.H.)
assert 1 <= x // fails without post S

=

TU
Christoph Matheja — 02245 — Program Verification 27

Y

Exercise

= Add a function size(t: Tree): Int to the
skeleton 10-trees.vpr that counts the
number of leafs in the tree t.

= Add a postcondition such that the client in
the code skeleton verifies.

method client() {
var t: Tree
t := node(node(leaf(3), leaf(17)), leaf(22))

assert size(t) >= ©

}

=
—
=

Christoph Matheja — 02245 — Program Verification

i

Outline

= Mathematical data types

User-defined functions

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

30

Simplified encoding of functions

» User-defined functions are encoded into the background predicate as an
uninterpreted function and a definitional axiom

function f(x: T): TT { function f(x: T): TT
E
} axiom forall x: T :: f(x) ==

= The axiom above is simplified; it omits
- pre- and postconditions
- checks that partial expressions are well-defined

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

31

Simplified encoding with pre- and postconditions

= Function pre- and postconditions are added to the

function f(x: T): TT function f(x: T): TT
requires P

axiom {
ensures Q forall x: T ::
{ E} P ==> f(x) == E && Q[result/f(x)]
}

= Sound, but recursive functions may lead to non-termination =» next module

= Note that postconditions are encoded in the axiom
- An inconsistent postcondition can compromise soundness, even if the function is never called!

function f(): Bool =l

ensures false assert false
{ £0) } Q

(=]
—
=

Christoph Matheja — 02245 — Program Verification 32

Y

Well-definedness conditions for partial expressions

= New proof obligation: all expressions are well-defined

- Example: no division by zero
- User-defined functions are are called with arguments that satisfy their preconditions

= \Well-definedness condition DEF: Expr — Pred

- DEF(e) holds in state o iff expression e can be evaluated in o Short-circuit evaluation

Expression e

0, 1, -3, false, .. (constants) true

el + e2, el < e2, el && e2, .. DEF(el) && DEF(2)

el / e2 DEF(el) && DEF(e2) & e2 != 0
foo(e) DEF(e) && “precondition of foo0”
el ==> e2 DEF(el) &% (el ==> DEF(e2))

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

33

Encoding partial expressions

» Every statement first asserts well-definedness of its expressions

precondition of f(y)

= Alternative: redefine WP

x 1= f(y) +2 *z/

x 1= f(y) +2 *z/

WP(x := e, Q)
wWP(assert P, Q) ::
WP(assume P, Q) ::

n

n

assume x/y > 1

4 4

assert DEF(f(y)) & n != 0

assert y 1= 0
assume x/y > 1

DEF(e) && Q[x / e]
DEF(P) && P && Q
DEF(P) & P ==> Q

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

34

Wrap-up

= Writing specifications often requires a
suitable mathematical vocabulary

- added via a background predicate BP that
axiomatizes uninterpreted sorts and functions

- Verification condition: BP ==> P ==> WP(S, Q)

» Viper's background predicate collects
axioms from multiple features
- Built-in types and their operations
- User-defined functions
- Custom axiomatizations via domains

method collect(s: Seq[Int])
returns (res: Set[Int])
ensures forall j: Int ::

@ <= j & j < |s| ==> s[j] in res
(...}

function f(n: Int): Int
{n<=1?1:n%*f(n-1) }

domain Set {

function (): Set
function (s: Set, t: Set): Set
// .

}

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 35

Wrap-up — Building Verifiers

We now have all ingredients
to implement and verify

sequential programs with PL1 (loops)
static memory L)

PL2 (procedures)

. 1t

Homework: try to verify some PL3 (domains)
interesting programs © 2

PL4 (built-in types)
Next: verification tactics *
- Verifier bottlenecks PL5 (functions)
- Pragmatics t
- Verify challenging programs start here

I

PLO

¥
MVL

$

set of FOL formulas

¥
SMTLIB-2 code

\ 4

unsat sat

99

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

36

Tentative course outline

Foundational oy
. Building a Loops and
— — . s —
Reg Soning ST s first verifier procedures
Principles
1 we are here
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models
Front-end
CoNnCuITeENCY [g
verifiers

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

37

