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§ Mathematical data types

§ User-defined functions

§ Function encoding
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Outline
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§ Our language so far supports only three types

§ Many functional languages feature mathematical data types
- lists, tuples, sets, trees, etc.

§ Subset of abstract data types (ADTs)
- What are values of a type?
- What are operations on data of a type?
- immutable, no side-effects
è“programming & specification vocabulary”

§ Mathematical data types are for specifying imperative code è module 8
- “Array sort leaves the multiset of elements unchanged”
- “All implementations of Java’s List interface store a sequence of elements”
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Mathematical data types
Types
T ::= Bool | Int | Rational

domain Set {
function empty(): Set
function add(s: Set, x: Int): Set
function contains(s: Set, x: Int): Bool
function union(s: Set, t: Set): Set
function is_empty(s: Set): Bool

}
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§ We extend our language to support 
commonly-used data types

§ The built-in data types
- are generic
- represent immutable, mathematical values
- represent finite collections
- are available in Viper

§ We use Viper’s expression syntax
- See tutorial for other data types
- https://viper.ethz.ch/tutorial 
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Common mathematical data types                                     (PL4)
Types
T ::= Bool | Int | Rational | Set[T] 

| Seq[T] | Multiset[T] | Map[T, T]

Expressions
e ::= ...                      as before

| Set[T]()                 empty set
| Set(!e)                   set literal
| e union e        
| e intersection e
| e setminus e
| e subset e
| e in e                 membership
| |e| cardinality

https://viper.ethz.ch/tutorial
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Example
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method collect(s: Seq[Int]) returns (res: Set[Int])
ensures forall j: Int :: 0 <= j && j < |s| ==> s[j] in res
ensures forall x: Int :: x in res ==> x in s

{
res := Set[Int]()
var i: Int := 0
while (i < |s|)
invariant 0 <= i && i <= |s|
invariant forall j: Int :: 0 <= j && j < i ==> s[j] in res
invariant forall x: Int :: x in res ==> x in s

{
res := res union Set(s[i])
i := i + 1

}
}

Set operations

Sequence operations
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§ Every domain declares a new 
type and associated functions

§ Corresponds to a axiomatizing 
a new theory
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Custom data types                                                              (PL3)

domain Point {
function cons(x: Int, y: Int): Point
function first(p: Point): Int 
function second(p: Point): Int

axiom destruct_over_construct {
forall x: Int, y: Int :: 
first(cons(x,y)) == x && second(cons(x,y)) == y

}
}

Types
T ::= Bool | Int | Rational

| <name>    defined types

Expressions
e ::= ...            as before

| <name>(e)  function call

Declarations
D ::= ...                                     as before

| domain <name> {                   define new type
(function <name>(x:T): T)*      define function
(axiom <name> { P })*              define axiom

}
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Example: binary trees with values at leafs
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// Java-like code
interface Tree {
Tree leaf(int value);
Tree node(Tree left, Tree right);

bool is_leaf();
Tree left();
Tree right();
int value();
}

domain Tree {

function leaf(value: Int): Tree
function node(left: Tree, right: Tree): Tree

function is_leaf(t: Tree): Bool 
function value(t: Tree): Int 
function left(t: Tree): Tree
function right(t: Tree): Tree

axiom value_over_leaf {
forall x:Int :: value(leaf(x)) == x

}

axiom right_over_node {
forall l:Tree, r:Tree :: right(node(l, r)) == r

}

// ... (see 02-tree.vpr)

}

var t: Tree := node(
node(leaf(3), leaf(17)),    
leaf(22)

)
assert !is_leaf(t)
var t2: Tree := right(left(t))
assert value(t2) == 17



§ The file 03-trees.vpr axiomatizes 
binary trees with integer values stored 
in leafs.

§ Extend the Tree domain by a function 
size that takes a Tree and returns the 
number of leafs in the tree.

§ Extend the Tree domain by a function 
sum that takes a Tree and returns the 
sum of all values stored in the tree.

§ Test your domain against the following 
client (also found in the file but 
commented out)
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Exercise

method client() {
var t: Tree
t := node(

node(
leaf(3), 
leaf(17)

), 
leaf(22)

)

assert sum(t) == 42
assert size(t) == 3

}
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Encoding of custom data types
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§ We encode custom data types into 
SMT by axiomatizing them
- new type è uninterpreted sort
- new operation è uninterpreted function
- new axiom è assert axiom (add to BP)

(declare-sort Set)

(declare-const empty Set)
(declare-fun card (Set) Int)
; ...

(assert (= (card empty) 0)) ; axiom
; ...

Verification condition: 
BP ==> P ==> WP(S, Q) valid

Background Predicate:
conjunction of all axioms

domain Set {
function empty(): Set
function card(s: Set): Int
// ...

axiom card_empty { card(empty()) == 0 }
// ...

}
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Encoding of built-in data types
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§ Built-in data types define domains 
with carefully crafted axioms and 
more convenient syntax

§ Encoding: PL4 è PL3

§ Generics can be handled via 
monomorphization: generate a 
separate axiomatization for every 
instance of a generic type T that is 
used in a given program

Types

T ::= ... 
| Set[T]

Expressions
e ::= ...        as before

| Set[T]()   empty set
| |e|        cardinality

domain IntSet {
function empty(): IntSet
function card(s: IntSet): Int
// ...

axiom card_empty { card(empty()) == 0 }
// ...

}

T ::= Int
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§ Mathematical data types

§ User-defined functions

§ Function encoding
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Outline
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Writing stronger specifications
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§ The built-in types and operators allow one 
to specify many interesting properties

§ However, there are many methods whose 
behavior cannot be specified (easily)

§ It is often useful to define additional 
mathematical vocabulary to specify the 
intended behavior

è Axiomatizations have a fixed pattern

è Use functional programs

method fac(n: Int) returns (res: Int)
requires 0 <= n
ensures res == facDef(n)

{
res := 1
var i: Int := 1

while(i <= n) {
res := res * i
i := i + 1

}
}

domain X { 
function facDef(n: Int): Int
axiom {
forall n: Int :: 
(n <= 1 ==> facDef(n) == 1) &&
(n > 1 ==> facDef(n) 

== n * facDef(n-1)) 
}}
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User-defined functions                                                       (PL5)
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§ Functions abstract over expressions
- can appear in specifications
- can be recursive
- can be uninterpreted (no definition)

§ Model of mathematical functions
- no side-effects
- must always terminate (not checked by Viper!)
- deterministic
- well-defined for every input (total)

function facDef(n: Int): Int
{
n <= 1 ? 1 : n * facDef(n-1)

}

Expressions
e ::= ... | <name>(!e)

Declarations
D ::= ... 

| function <name>(x: T): T
(requires P)*
(ensures Q)*
({ e })?
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Reasoning about function calls
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§ Functions generally do not require a specification
- Postconditions are typically equal the function definition

§ We reason about calls by using the 
function definition

§ In contrast to methods, reasoning about 
function calls is not modular

§ Non-modularity has drawbacks
- All callers need to be re-verified when a function definition changes
- But mathematical vocabulary is typically more stable

function facDef(n: Int): Int
{
n <= 1 ? 1 : n * facDef(n-1)

}

x := facDef(1)
assert x == 1
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Partial functions
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§ Many operations are inherently partial functions
- Meaningful only on a subset of the possible arguments
- Example: division by zero

§ Option 1: construct artificially total functions
- Often leads to awkward function definitions
- May cause misleading error messages

§ Option 2: equip functions with preconditions
- Needs to be checked for every function call
- Also called “well-definedness conditions”
- Supported by Viper

function facDef(n: Int): Int
{ n <= 1 ? 1 : n * facDef(n-1) }

x := facDef(-1)

function facDef(n: Int): Int
requires 0 <= n

{ n <= 1 ? 1 : n * facDef(n-1) }

x := facDef(-1)



Define a function fib(n) that yields the nth
Fibonacci number.

fib(0)   = 0
fib(1)   = 1
fib(n+2) = fib(n+1) + fib(n)

Provide a suitable precondition.

Verify that the method on the right computes 
the nth Fibonacci number.

Hint: You can use the skeleton 07-fib.vpr 
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Exercise
method iter_fib(n: Int) returns (res: Int)
requires 0 <= n
ensures …

{  
res := 0
var i: Int := 0
var next: Int := 1

while (i < n) 
invariant …

{
var t: Int := res
res := next
next := t + next
i := i + 1

}
}
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Function postconditions
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§ Since reasoning about function calls uses the function definition, functions 
typically do not have postconditions

§ But postconditions are permitted
- Use keyword result to refer to the returned value

§ When reasoning about function calls, Viper
uses the function definition and the postcondition

§ Postcondition is verified against function definition
- Assumed for recursive calls
- Dangerous when functions do not terminate!

function facDef(n: Int): Int
requires 0 <= n
ensures 1 <= result

{ n <= 1 ? 1 : n * facDef(n-1) }

function f(): Bool
ensures false

{ f() }

x := f()
assert false
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Use cases for function postconditions
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§ Abstract functions
- Shortcut for axiomatizing certain functions
- In the absence of a function definition, calls 

are verified using only the postcondition

c := sqrt(a*a + b*b)
assert a*a + b*b - c*c < 2*c + 1 

function sqrt(n: Int): Int
requires 0 <= n
ensures 0 <= result
ensures result * result <= n && 

n < (result+1) * (result+1)

Encode a choose-statement in Viper, which returns an arbitrary integer, 
as an abstract function.
Use your encoding to choose two values. Can you prove that they are 
equal or unequal?
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Use cases for function postconditions
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§ Automating induction proofs
- SMT solvers are generally not able to 

prove properties about recursive functions 
using induction

- By declaring a function postcondition, we 
provide the necessary induction hypothesis

- Also works with methods è lemmas

function facDef(n: Int): Int
requires 0 <= n

{ n <= 1 ? 1 : n * facDef(n-1) }

assume 0 <= y
x := facDef(y)
assert 1 <= x

function facDef(n: Int): Int
requires 0 <= n
ensures 1 <= result

{ n <= 1 ? 1 : n * facDef(n-1) }

assume 0 <= y
x := facDef(y)
assert 1 <= x // fails without post

function facDef(n: Int): Int
requires 0 <= n
ensures 1 <= result

{ 
n <= 1 

? 1 

: n * facDef(n-1) 
}

Induction hypothesis: 
for all m < n, 1 <= facDef(m) 

Induction base: 
facDef(0) >= 1, facDef(1) >= 1

Induction step: for n > 1, 
facDef(n)
=  n * facDef(n-1)
>= facDef(n-1)        (n > 1)
>= 1                (by I.H.)



§ Add a function size(t: Tree): Int to the 
skeleton 10-trees.vpr that counts the 
number of leafs in the tree t.

§ Add a postcondition such that the client in 
the code skeleton verifies.
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Exercise

method client() {
var t: Tree
t := node(node(leaf(3), leaf(17)), leaf(22))
assert size(t) >= 0

}



30

§ Mathematical data types

§ User-defined functions

§ Function encoding
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Outline
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Simplified encoding of functions
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§ User-defined functions are encoded into the background predicate as an 
uninterpreted function and a definitional axiom

§ The axiom above is simplified; it omits
- pre- and postconditions
- checks that partial expressions are well-defined

function f(x: T): TT {
E

}

function f(x: T): TT

axiom forall x: T :: f(x) == E
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Simplified encoding with pre- and postconditions 
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§ Function pre- and postconditions are added to the definitional axiom

§ Sound, but recursive functions may lead to non-termination è next module

§ Note that postconditions are encoded in the axiom 
- An inconsistent postcondition can compromise soundness, even if the function is never called!

function f(x: T): TT 
requires P
ensures  Q

{ E }

function f(x: T): TT

axiom {
forall x: T :: 
P ==> f(x) == E && Q[result/f(x)]

}

function f(): Bool
ensures false

{ f() }

x := f()
assert false
x := f()
assert false
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§ New proof obligation: all expressions are well-defined
- Example: no division by zero
- User-defined functions are are called with arguments that satisfy their preconditions

§ Well-definedness condition DEF: Expr → Pred
- DEF(e) holds in state σ iff expression e can be evaluated in σ
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Well-definedness conditions for partial expressions

Expression e DEF(e)

0, 1, -3, false, … (constants) true

e1 + e2, e1 < e2, e1 && e2, … DEF(e1) && DEF(2)

e1 / e2 DEF(e1) && DEF(e2) && e2 != 0

foo(e) DEF(e) && “precondition of foo”

e1 ==> e2 DEF(e1) && (e1 ==> DEF(e2))

Short-circuit evaluation
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§ Every statement first asserts well-definedness of its expressions

§ Alternative: redefine WP
WP(x := e, Q)   ::= DEF(e) && Q[x / e]
WP(assert P, Q) ::= DEF(P) && P && Q 
WP(assume P, Q) ::= DEF(P) && P ==> Q

...
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Encoding partial expressions

assume x/y > 1x := f(y) + 2 * z / n

assert DEF(f(y)) && n != 0
x := f(y) + 2 * z / n

assert y != 0
assume x/y > 1

precondition of f(y)
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Wrap-up
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§ Writing specifications often requires a 
suitable mathematical vocabulary
- added via a background predicate BP that 

axiomatizes uninterpreted sorts and functions
- Verification condition: BP ==> P ==> WP(S, Q)

§ Viper’s background predicate collects 
axioms from multiple features
- Built-in types and their operations
- User-defined functions
- Custom axiomatizations via domains

function f(n: Int): Int
{ n <= 1 ? 1 : n * f(n-1) }

method collect(s: Seq[Int]) 
returns (res: Set[Int])
ensures forall j: Int :: 
0 <= j && j < |s| ==> s[j] in res

{ ... }

domain Set {
function empty(): Set
function union(s: Set, t: Set): Set
// ...

}
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§ We now have all ingredients 
to implement and verify 
sequential programs with 
static memory

§ Homework: try to verify some 
interesting programs J

§ Next: verification tactics
- Verifier bottlenecks
- Pragmatics
- Verify challenging programs
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Wrap-up – Building Verifiers

set of FOL formulas 

PL0

SMTLIB-2 code

unsat sat

PL1 (loops)

MVLPL2 (procedures)

PL3 (domains)

PL4 (built-in types)

PL5 (functions)

start here
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Tentative course outline
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