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Mathematical data types

= Qur language so far supports only three types Types
T ::= Bool | Int | Rational

= Many functional languages feature mathematical data types
- lists, tuples, sets, trees, etc.

domain {
= Subset of (ADTS) function (): Set
- What are values of a type’? function (s: Set, x: Int): Set
- What are on data of a tvpe? function (s: Set, x: Int): Bool
ype: function (s: Set, t: Set): Set
- immutable, no side-effects function (s: Set): Bool
= ‘brogramming & specification vocabulary” }

» Mathematical data types are for specifying imperative code =» module 8
- “Array sort leaves the of elements unchanged”
- "All implementations of Java’s List interface store a of elements”
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Common mathematical data types (PL4)

= We extend our language to support Types
commonly-used data types T ::= Bool | Int | Rational | Set[T]
| Seq[T] | Multiset[T] | Map[T, T]
- are generic e 1= ... as before
- represent immutable, mathematical values Set[T]() empty set
- represent finite collections Zezﬁign . set literal

- are available in Viper intersection e

setminus e

e

e
: , . e subset e
= We use Viper's expression syntax o
|

- See tutorial for other data types
- https://viper.ethz.ch/tutorial

in e membership
e| cardinality
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Example

method collect(s: Seq|[Int]) returns (res: Set[Int])

{

ensures forall j: Int :: @ <= j & j < |s| ==> s[i] in res
ensures forall x: Int :: X in res ==> X in s

res := Set[Int]()
var i: Int := 0
while (i < |s])
invariant 0 <= i && i <= |s|

Set operations

Sequence operations

invariant forall j: Int :: 0 <= j & j < i ==> s[j]| in res
invariant forall x: Int :: x in res ==> X in s
{
res := res union Set(s[i])
i:=1+1
}
}
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Custom data types

Declarations
D ::= ..

| domain <name> {

function <name>(x:T): T
axiom <name> { P }

define new type

define function
define axiom

domain Point {
function cons(x: Int, y: Int): Point
function first(p: Point): Int -
function second(p: Point): Int

axiom destruct over construct {
forall x: Int, y: Int :: n
first(cons(x,y)) x && second(cons(x,y)) ==

(PL3)

Types

as before T ::= Bool | Int | Rational

| <name> defined types

Expressions
e :

°= oo as before
| <name>(e) function call

Every domain declares a new
type and associated functions

Corresponds to a axiomatizing
a new theory
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Example: binary trees with values at leafs

// Java-like code domain Tree {

interface Tree { function leaf(value: Int): Tree

Tree leaf(int value); . function node(left: Tree, right: Tree): Tree
Tree node(Tree left, Tree right);
function is leaf(t: Tree): Bool

bool is_leaf(); function value(t: Tree): Int
Tree left(); function left(t: Tree): Tree

Tree right(); function right(t: Tree): Tree
int value();
} axiom value over_ leaf {

forall x:Int :: value(leaf(x)) == x

var t: Tree := node( ) . .
node(leaf(3), leaf(17)), axiom right over node {
leaf(22) forall 1:Tree, r:Tree :: right(node(l, r)) ==r
) }
assert lis leaf(t) // ... (see @2-tree.vpr)
var t2: Tree := right(left(t))
assert value(t2) == 17 }
DTU
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Example: binary trees with values at leafs

// Java-like code domain Tree {
interface Tree {

) functinn js leaf(t: Tree): Bool
bool is_leaf();

Tree left(); value(t: Tree): Int

Tree right(); constructors left(t: Tree): Tree
int value(); right(t: Tree): Tree

¥ axiom value over leaf {
forall x:Int :: value(leaf(x)) ==

var t: Tree := node( }

node(leaf(3), leaf(17)), axiom right_over_ node {

leaf(22) forall 1:Tree, r:Tree :: right(node(l, r)) == r
) }
assert l!is leaf(t)
var t2: Tree := right(left(t)) // ... (see @2-tree.vpr)
assert value(t2) == 17 }
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Example: binary trees with values at leafs

// Java-like code domain Tree {
interface Tree { function leaf(value: Int): Tree
Tree leaf(int value); function node(left: Tree, right: Tree): Tree

Tree node(Tree left, Tree right);

function value(t: Tree): Int

Tree left(); left(t: Tree): Tree
Tr:e Pightg), right(t: Tree): Tree
int value(); : _
} dISCI’ImInatOrS ue_over_leaf {
x:Int :: value(leaf(x)) == X
var t: Tree := node( ’
nodé(leaf(é), leaf(17)), axiom right over node {
leaf(22) forall 1:Tree, r:Tree :: right(node(l, r)) ==r
) | }
assert !is_leaf(t) // ... (see 02-tree.vpr)
var t2: Tree := right(left(t))
assert value(t2) == 17 }
DTU 10
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Example: binary trees with values at leafs

// Java-like code domain Tree {

interface Tree { function leaf(value: Int): Tree
Tree leaf(int value); . function node(left: Tree, right: Tree): Tree
Tree node(Tree left, Tree right);
function is leaf(t: Tree): Bool

bool is leaf();

axiom value_over_leaf {

}
x:Int :: value(leaf(x)) == X

var t: Tree := node( destructors

node(leaf(3), leaf(17) 3ht_over_node {

leaf(22) 1:Tree, r:Tree :: right(node(l, r)) ==r
) ¥
assert lis_leaf(t) // ... (see @2-tree.vpr)
var t2: Tree := right(left(t)) )

assert value(t2) == 17
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Example: binary trees with values at leafs

// Java-like code Axioms
interficefzr-ee { - = Discriminators over constructors Tree
Tree leaf(int value) right: Tree): Tree
Tree node(Tree left, ® All trees are built from constructors SHE: ):
. Bool
bool is_leaf(); = Destructors over constructors nt
Tree left(); ee
Tree right(); function right(t: Tree): Tree
int value();
}
var t: Tree := node(
node(leaf(3), leaf(17)),
leaf(22)
)

assert l!is leaf(t)
var t2: Tree := right(left(t))
assert value(t2) == 17 }
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Exercise

= The file 83-trees.vpr axiomatizes

binary trees with integer values stored
in leafs.

Extend the Tree domain by a function
size that takes a Tree and returns the
number of leafs in the tree.

Extend the Tree domain by a function
sum that takes a Tree and returns the
sum of all values stored in the tree.

Test your domain against the following
client (also found in the file but
commented out)

method client() {
var t: Tree
:= node(
node (
leaf(3),
leaf(17)

)5
leaf(22)

)

assert sum(t) =
assert size(t)
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Solution (see updated 83-trees.vpr)

= The file 83-trees.vpr axiomatizes

binary trees with integer values stored nethod client() {
in leafs. var t: Tree

:= node(
Extend the Tree domain by a function node(
size that takes a Tree and returns the 12:33)
number of leafs in the tree. ),

leaf(22)

Extend the Tree domain by a function )
sum that takes a Tree and returns the assert sum(t) =
sum of all values stored in the tree. assert size(t)

}

Test your domain against the following
client (also found in the file but
commented out)
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Encoding of custom data types

domain Set {
function empty(): Set

= We encode custom data types into function card(s: Set): Int

SMT by axiomatizing them /)
- new type =» uninterpreted sort .
, _ , axiom card empty { card(empty()) == 0 }
- new operation = uninterpreted function e
- new axiom =» assert axiom (add to BP) } Conceptually, data types are encoded to
PLO as assume BEP; the SMT language also
/ needs declarations which are not in PLO.

Background Predicate:

conjunction of all axioms (declare-sort set)

Pragmatically, we

can enrich PLO by a
(declare-const empty Set) statement for SMT
(declare-fun card (Set) Int) declarations or

Verification condition: 5 e “inline SMT code”

BP ==> P ==> WP(S, Q) valid (assert (= (card empty) ©)) ; axiom

)

=
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Encoding of built-in data types

Types Expressions
» Built-in data types define domains Tooam e 1:= ...
with carefully crafted axioms and | set[T] | set[T]() empty set
: | |el cardinality
more convenient syntax
* Encoding: PL4 = PL3
T ::= Int
= Generics can be handled via domain IntSet {
hization: t function empty(): IntSet
monomorp _Iza |o_n. g.enera €a function card(s: IntSet): Int
separate axiomatization for every /) ..
instance of a generic type T thatis
: : axiom card empty { card(empty()) == 0 }
used in a given program .

}
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= Mathematical data types

= Function encoding
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Writing stronger specifications

* The built-in types and operators allow one
to specify many interesting properties

= However, there are many methods whose
behavior cannot be specified (easily)

= |tis often useful to define additional
mathematical vocabulary to specify the
intended behavior

= Axiomatizations have a fixed pattern

= Use

method fac(n: Int) returns (res: Int)

requires O <= n
ensures res == facDef(n)

res := 1
var i: Int := 1

while(i <= n) {
res := res * i
i:=1+ 1
}
}

domain X {
function facDef(n: Int): Int

axiom {
forall n: Int ::
(n <= 1 ==> facDef(n) == 1) &&
(n > 1 ==> facDef(n)
== n * facDef(n-1))

3}
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User-defined functions

= Functions abstract over
- can appear in specifications
- can be recursive
- can be uninterpreted (no definition)

= Model of mathematical functions

no side-effects

must always terminate (not checked by Viper!)
deterministic

well-defined for every input (total)

(PLS)

function facDef(n: Int): Int
{

}

Declarations
D ::= ...
| function <name>(x: T): T
requires P
ensures Q

{e}

Expressions
e 1:= ... <name>(€e)
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Reasoning about function calls

Functions generally do not require a specification
- Postconditions are typically equal the function definition

We reason about calls by using the function facDef(n: Int): Int
function definition {
n<=12?1:n * facDef(n-
}

x := facDef(1)

In contrast to methods, reasoning about assert x o

function calls is not modular

Non-modularity has drawbacks

- All callers need to be re-verified when a function definition changes
- But mathematical vocabulary is typically more stable

1)

O
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Partial functions

» Many operations are inherently partial functions
- Meaningful only on a subset of the possible arguments
- Example: division by zero

» Option 1: construct artificially total functions
- Often leads to awkward function definitions
- May cause misleading error messages

= QOption 2: equip functions with preconditions
- Needs to be checked for every function call

- Also called “well-definedness conditions”
- Supported by Viper

function facDef(n: Int): Int

{n«<=17?1":

x := facDef(-1)

n * facDef(n-1) }

O

function facDef(n: Int): Int
requires 0 <= n

{n«<=17?1":

x := facDef(-1)

n * facDef(n-1) }

X,
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Exercise

Define a function fib(n) that yields the nth method iter_fib(n: Int) returns (res: Int)
Fibonacci number. requires 0@ <= n
ensures

fib(@) = o o

fib(1) = L var i: Int :=

fib(n+2) = fib(n+1l) + fib(n) var next: Int :
Provide a suitable precondition. while (i < n)

invariant ..

Verify that the method on the right computes {
the nth Fibonacci number. var t: Int :

res := next
next := t +
i:=1+1
}
}

Hint: You can use the skeleton 67-fib.vpr

=
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Solution

Define a function fib(n) that yields the nt
Fibonacci number.

fib(®) =0
fib(1) =1
fib(n+2) = fib(n+1l) + fib(n)

Provide a suitable precondition.

Verify that the method on the right computes
the nt" Fibonacci number.

Hint: You can use the skeleton 67-fib.vpr

function fib(n: Int): Int
requires O <= n

{n<2?n: fib(n-1) + fib(n-2) }

method iter fib(n: Int) returns (res:

requires O <= n
ensures res == fib(n)

= 0
var i: Int := 0
var next: Int :=

while (i < n)
invariant 0 <= i & i <= n

invariant res == fib(i)
invariant next == fib(i+l)

var t: Int := res
res := next
next := t + next
i:=1+1

Int)
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Function postconditions

» Since reasoning about function calls uses the function definition, functions
typically do not have postconditions

- _ function facDef(n: Int): Int
= But postconditions are permitted requires @ <= n

- Use keyword result to refer to the returned value ensures 1 <= result

{n<=1?1:n* facbef(n-1) }

= When reasoning about function calls, Viper

uses the function definition and the postcondition

function f(): Bool
ensures false
» Postcondition is verified against function definition { f() }

- Assumed for recursive calls

- Dangerous when functions do not terminate! x 1= f()
assert false

v,
g,
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Use cases for function postconditions

function sqgrt(n: Int): Int

= Abstract functions aTEres 6 e T

- Shortcut for axiomatizing certain functions ensures 0 <= result
. _— * -
- In the absence of a function definition, calls ensures :efugesu;:i‘ﬂt;(sti‘i‘tﬂ)
are verified using only the postcondition

c := sqrt(a*a + b*b)

assert a*a + b*b - c*c < 2*c + 1 (:::)

Encode a choose-statement in Viper, which returns an arbitrary integer,
as an abstract function.

Use your encoding to choose two values. Can you prove that they are
equal or unequal?

=
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Solution

function choose(): Int method main() {
var x: Int
var y: Int

:= choose()
:= choose()

assert x ==y // succeeds
assert x =y // fails

Encode a choose-statement in Viper, which returns an arbitrary integer,
as an abstract function.

Use your encoding to choose two values. Can you prove that they are
equal or unequal?

=
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Use cases for function postconditions

function facDef(n: Int): Int function facDef(n: Int): Int
requires 0 <= n requires 0 <= n
ensures 1 <= result ensures 1 <= result

{n<=12?1:n* facdef(n-1) } Induction hypothesis:

for all m < n, 1 <= facDef(m)

{
assume 0 <=y n <= 1
x := facDef(y) Induction base:
assert 1 <= x // fails without post <:::> > 1 | facDef(@) >= 1, facDef(1l) >= 1
= Automating induction proofs : n * facDef(n-1)

- SMT solvers are generally not able to } e Etten Stens Gor m >
prove properties about recursive functions facDef(n) ’
using induction - n * facDef(n-1)

- By declaring a function postcondition, we >= facDef(n-1) (n > 1)
provide the necessary induction hypothesis >= 1 (by I.H.)

- Also works with methods = lemmas

(=]
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Exercise

= Add a function size(t: Tree): Int to the
skeleton 10-trees.vpr that counts the
number of leafs in the tree t.

= Add a postcondition such that the client in
the code skeleton verifies.

method client() {
var t: Tree
t := node(node(leaf(3), leaf(17)), leaf(22))

assert size(t) >= ©

}

=
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Solution

= Add afunction size(t: Tree): Int tothe EIISSTIIETEEIIEENNTI-T)EMNTIL:

skeleton 10-trees.vpr that counts the ensures result >= @

number of leafs in the tree t. { is leaf(t)

> 1
- _ _ : size(left(t)) + size(right(t))
= Add a postcondition such that the client in

the code skeleton verifies.

method client() {

var t: Tree
t := node(node(leaf(3), leaf(17)), leaf(22))

assert size(t) >= ©

}

=
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Outline

= Mathematical data types

User-defined functions
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Simplified encoding of functions

» User-defined functions are encoded into the background predicate as an
uninterpreted function and a definitional axiom

function f(x: T): TT { function f(x: T): TT
E
} axiom forall x: T :: f(x) ==

= The axiom above is simplified; it omits
- pre- and postconditions
- checks that partial expressions are well-defined

(=]
—
=
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Simplified encoding with pre- and postconditions

= Function pre- and postconditions are added to the

function f(x: T): TT function f(x: T): TT
requires P axiom {
ensures Q forall x: T ::
{E} P ==> f(x) == E && Q[result/f(x)]
}

= Sound, but recursive functions may lead to non-termination =» next module

= Note that postconditions are encoded in the axiom
- An inconsistent postcondition can compromise soundness,

function f(): Bool =l

ensures false assert false
{ £0) } Q
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Well-definedness conditions for partial expressions

= New proof obligation: all expressions are well-defined

- Example: no division by zero
- User-defined functions are are called with arguments that satisfy their preconditions

= \Well-definedness condition DEF: Expr — Pred

- DEF(e) holds in state o iff expression e can be evaluated in o Short-circuit evaluation

Expression e

0, 1, -3, false, .. (constants) true

el + e2, el < e2, el && e2, .. DEF(el) && DEF(2)

el / e2 DEF(el) && DEF(e2) & e2 != 0
foo(e) DEF(e) && “precondition of foo0”
el ==> e2 DEF(el) &% (el ==> DEF(e2))

(=]
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Encoding partial expressions

» Every statement first asserts well-definedness of its expressions

precondition of f(y)

= Alternative: redefine WP

x 1= f(y) +2 *z/

x 1= f(y) +2 *z/

WP(x := e, Q)
wWP(assert P, Q) ::
WP(assume P, Q) ::

n

n

assume x/y > 1

4 4

assert DEF(f(y)) & n != 0

assert y 1= 0
assume x/y > 1

DEF(e) && Q[x / e]
DEF(P) && P && Q
DEF(P) & P ==> Q
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Wrap-up

= Writing specifications often requires a
suitable mathematical vocabulary

- added via a background predicate BP that
axiomatizes uninterpreted sorts and functions

- Verification condition: BP ==> P ==> WP(S, Q)

» Viper's background predicate collects
axioms from multiple features
- Built-in types and their operations
- User-defined functions
- Custom axiomatizations via domains

method collect(s: Seq[Int])
returns (res: Set[Int])
ensures forall j: Int ::

@ <= j & j < |s| ==> s[j] in res
(...}

function f(n: Int): Int
{n<=1?1:n%*f(n-1) }

domain Set {

function (): Set
function (s: Set, t: Set): Set
// .

}
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Wrap-up — Building Verifiers

= We now have all ingredients
to implement and verify
sequential programs with
static memory

» Homework: try to verify some
interesting programs ©

» Next: verification tactics
- Verifier bottlenecks
- Pragmatics
- Verify challenging programs

Conceptually, declarations of sorts, functions, and variables are implicit, i.e.
derived from the set of FOL formulas. In practice, we need to provide these
declarations and thus cannot fully encode PL3 to PLO. We can either directly
add the SMTLIB-2 code or enrich every layer with a statement for inline SMT
code that is added to the beginning of the generated SMTLIB-2 code.

PL1 (loops)
*
PL2 (procedures)

*
PL3 (domains)

*
PL4 (built-in types)
*
PL5 (functions)
t

start here

R

PLO

$
MVL

4
set of FOL formulas
N\
\4 ¥
SMTLIB-2 code

\ 4

unsat sat

v

X
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