
1

LOOPS & PROCEDURES
02245 – Chapter 4

Christoph Matheja – 02245 – Program Verification

2

Roadmap

Christoph Matheja – 02245 – Program Verification

source code
annotated with
specifications

Automated verifier

Intermediate Verification
Language

Generation of
proof obligations

Intermediate Verification
Language

Front-end

SMT solver
feedback

We are here

3

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers

4

PROCEDURES
02245 – Chapter 4.2

Christoph Matheja – 02245 – Program Verification

5

Example – procedure & client

Christoph Matheja – 02245 – Program Verification

method triple(x: Int)
returns (r: Int)
requires x % 2 == 0
ensures r == 3 * x

{
r := x / 2
r := 6 * r

}

method client() {
var z: Int

z := triple(6)
assert z == 18

// z := triple(7) ß FAILS
}

§ Procedures
- Define their own scope
- Specify a contract
- May be abstract
- May be recursive

§ Modular verification of calls
- Inspects method contracts
- Does not inspect implementations
- Avoid client re-verification if implementation

changes
- Respects information hiding

6

Example – abstract procedure

Christoph Matheja – 02245 – Program Verification

method isqrt(x: Int)
returns (r: Int)
requires x >= 0
ensures x >= r * r
ensures x < (r+1) * (r+1)

method client()
{
var i: Int
i := isqrt(25)
assert i == 5

}

§ Abstract procedures
- Specify a contract
- Have no implementation
- Use case: code that cannot be verified
- Are assumed correct è part of trusted codebase

§ Clients of abstract procedures are identical
to clients of ordinary procedures

7

Example – recursive procedure

Christoph Matheja – 02245 – Program Verification

method factorial(n: Int)
returns (res: Int)
requires 0 <= n
ensures 1 <= res && n <= res

{
if (n == 0) {
res := 1

} else {
res := factorial(n-1)
res := n * res

}
}

method client() {
var x: Int
x := factorial(5)
assert 5 <= x

}

§ Very weak specification

§ We will soon consider more
intricate contracts

8

§ Language extension to PL2

§ Partial correctness reasoning

§ Encoding

§ Global Variables

§ Termination

Christoph Matheja – 02245 – Program Verification

Outline

9

§ All statements are placed in methods

§ We consider only well-typed programs

§ All variables are local to a method

§ All parameters are call-by-value

§ Methods are not mathematical functions

è no method calls in predicates

Christoph Matheja – 02245 – Program Verification

Extending the language (PL2)

Statements

S ::= ... (as before)

| z := <name>(e) (possibly recursive call)

Declarations

D ::= method <name>(x:T) (input parameters)
(returns (y:T))? (output parameters)
(requires P)* (precondition)
(ensures Q)* (postcondition)
({ S })? (method body)

| D;D

distinct sequences

tuple of expressions with same types as x

10

Semantics via inlining (sketch)

Christoph Matheja – 02245 – Program Verification

method foo(x:T) returns (y:T) { S }
{ true }
var n: Int := 1
{ n == 1 }
n := double(n)
{ n == 2 }
n := double(n)
{ n == 4 }

different postconditions

Semantics again given by fixed points (FP)

§ higher-order FP for each procedure

FP(foo): Pred → Pred

§ total correctness: least FP

§ partial correctness: greatest FP

WP(z := foo(a), Q)

= WP(x := a ; S ; z := y, Q)

may contain other calls to foo

z := foo(a) ~ x := a ; S ; z := y

“semantically equivalent to”

11

Procedure inlining

Christoph Matheja – 02245 – Program Verification

§ One could verify procedure calls like macros by
inlining the procedure implementation

§ However, inlining has several drawbacks:
- it does not work for recursive procedures
- it does not work when the implementation is not known

statically (e.g., dynamic binding)
- it does not support implementations that cannot be verified

(e.g., foreign functions, binary libraries, complex code)
- it increases the program size substantially and slows down

verification
- it is not modular; clients need to be re-verified when the

procedure implementation changes

method factorial(n: Int)
returns (res: Int) {
if (n == 0) {
res := 1

} else {
res := factorial(n-1)
res := n * res

}
}

void foo(Collection c) {
c.add(“Hello”);

}

void bar(FileOutputStream f) {
f.write(5);

}

textEncryptor.encrypt(myText);

12

Modular reasoning about procedures

Christoph Matheja – 02245 – Program Verification

§ Goal: verify procedures modularly, that is,
independently of their callers

§ Verify that implementation satisfies the
specification
- Rely on precondition
- Check postcondition

§ Verify every caller against the specification
- Check precondition
- Rely on postcondition

x := factorial(5)

assert 1 <= x // succeeds
assert x == 6 // fails

method factorial(n: Int)
returns (res: Int)
requires 0 <= n
ensures 1 <= res && n <= res

{
res := n + 1

}

13

§ Language extension to PL2

§ Partial correctness reasoning

§ Encoding

§ Global Variables

§ Termination

Christoph Matheja – 02245 – Program Verification

Outline

14

Proof obligations

Christoph Matheja – 02245 – Program Verification

§ Procedure implementation satisfies its contract

§ To handle recursion, proof may assume that all procedures
satisfy their contract approximating WP

§ Verify caller against contract

valid: { P } S { Q }

method foo(x:T)
returns (y:T)
requires P
ensures Q

{ S }

Call rule

{ P } method foo(x:T) returns (y:T) { Q }

{ P[x / a] } z := foo(a) { Q[x / a][y / z] }

account for arguments (assuming z does not appear in a)

consult declared contract

15

Procedure framing

Christoph Matheja – 02245 – Program Verification

§ We often need to prove that a property is not affected by a call
- For loops, the analogous problem was solved by strengthening the loop invariant
- We cannot strengthen the procedure specification for each call

§ To enable framing, we need a dedicated frame rule for local variables

x := 0

z := factorial(5)

assert x == 0

Call rule
{ P } method foo(x:T) returns (y:T) { Q }

{ P[x / a] } z := foo(a) { Q[x / a][y / z] }

Frame rule for local variables
{ P[x / a] } z := foo(a) { Q[x / a][y / z] }

{ P[x / a] && R } z := foo(a) { Q[x / a][y / z] && R }
where no variable in
z appears free in R

16

§ To show: implementation satisfies contract

§ Proof by induction on the number k of calls

Christoph Matheja – 02245 – Program Verification

Example – modular reasoning and recursion
method factorial(n: Int)
returns (res: Int)
requires 0 <= n
ensures 1 <= res && n <= res

{
if (n == 0) {
res := 1

} else {
res := factorial(n-1)
res := n * res

}
}

{ 0 <= n }
res := factorial(n)
{ 1 <= res && n <= res }

17

§ To show: implementation satisfies contract

§ Proof by induction on the number k of calls

§ Base case k == 0: For every initial state,
there is at most one execution without any
recursive call

Christoph Matheja – 02245 – Program Verification

Example – modular reasoning and recursion
method factorial(n: Int)
returns (res: Int)
requires 0 <= n
ensures 1 <= res && n <= res

{
if (n == 0) {
res := 1

} else {
res := factorial(n-1)
res := n * res

}
}

{ 0 <= n }
{ n == 0 ==> 1 <= 1 && n <= 1 }
assume n == 0

{ 1 <= 1 && n <= 1 }
res := 1

{ 1 <= res && n <= res }

{ 0 <= n }
res := factorial(n)
{ 1 <= res && n <= res }

18

§ To show: implementation satisfies contract

§ Proof by induction on the number k of calls

§ Induction hypothesis: assume for all
executions with at most k calls that calls
satisfy the contract

Christoph Matheja – 02245 – Program Verification

Example – modular reasoning and recursion
method factorial(n: Int)
returns (res: Int)
requires 0 <= n
ensures 1 <= res && n <= res

{
if (n == 0) {
res := 1

} else {
res := factorial(n-1)
res := n * res

}
}

{ 0 <= n }
res := factorial(n)
{ 1 <= res && n <= res }

{ 0 <= n }
res := factorial(n)
{ 1 <= res && n <= res }

I.H.

19

§ To show: implementation satisfies contract

§ Proof by induction on the number k of calls

§ Induction step: using the induction
hypothesis, show that the implementation
satisfies the contract for executions with at
most k + 1 calls.

Christoph Matheja – 02245 – Program Verification

Example – modular reasoning and recursion
{ 0 <= n }
{ (n == 0 && 0 <= n)
|| (0 <= n && n != 0) }
if (n == 0) {
{ n == 0 && 0 <= n }
res := 1
{ 1 <= res && n <= res }

} else {
{ 0 <= n && n != 0 }
{ 0 <= n && 0 <= n && n != 0 }
res := factorial(n-1)
{ 1 <= res && n – 1 <= res
&& 0 <= n && n != 0 }

{ 1 <= n * res && n <= n * res }
res := n * res
{ 1 <= res && n <= res }

}
{ 1 <= res && n <= res }

{ 0 <= n }
res := factorial(n)
{ 1 <= res && n <= res }

{ 0 <= n }
res := factorial(n)
{ 1 <= res && n <= res }

I.H.
framing

20

§ Method never terminates
- Proof argument becomes cyclic

§ No induction base!
- Technically, we reason about a greatest

fixed point and do co-induction (think:
bisimulation)

§ Induction step can be verified

Christoph Matheja – 02245 – Program Verification

Example – partial correctness reasoning

method toBinary(d: Int)
returns (res: Int)
requires 0 <= d
ensures d % 2 == res % 10

{
res := toBinary(d/2)
res := res * 10 + (d % 2)

}

è verifies with respect to partial correctness:
whenever execution stops (here: never), the postcondition holds

21

Procedures in Viper

Christoph Matheja – 02245 – Program Verification

§ Multiple pre- / postconditions allowed
- Will be conjoined

§ Calls are statements
- No calls in (compound) expressions
- Parallel assignment of return values

§ No return statement: final value of result
variables will be returned

§ All variables are local
- Framing is straightforward

§ Verification is modular, with partial
correctness semantics

method divide(n: Int, d: Int)
returns (q: Int, r: Int)
requires 0 <= n
requires 1 <= d
ensures n == q*d + r

{
if (n < d) {
q := 0
r := n

} else {
q, r := divide(n-d, d)
q := q + 1

}
}

Exercise
§ Write a recursive method sum that yields the

sum of the first n natural numbers.

§ Provide a suitable specification.

§ Check whether your specification is strong
enough by verifying the client code below.

§ Sketch the induction proof justifying why your
implementation satisfies the specification

§ Implement the method below in a language of
your choice.

§ Run the method on various inputs and form a
hypothesis about its behavior.

§ Formalize your hypothesis as a Viper
specification and verify the method

Christoph Matheja – 02245 – Program Verification

method main() {
var r: Int

r := sum(10)

assert r == 55
}

method M(n: Int) returns (r: Int)
{
if (n > 100) {
r := n - 10

} else {
r := M(n + 11)
r := M(r)

}
}

25

§ Language extension to PL2

§ Partial correctness reasoning

§ Encoding

§ Global Variables

§ Termination

Christoph Matheja – 02245 – Program Verification

Outline

26

Encoding: procedure bodies

Christoph Matheja – 02245 – Program Verification

§ Procedure implementation satisfies the specification

- To handle recursion, proof may assume that all procedures satisfy their specifications
- Similarly to loops, this is sound as a correct contract is a pre-fixed point

§ Generate one proof obligation per method declaration

§ No proof obligation for abstract methods

valid: { P } S { Q }

assume P

// encoding of S

assert Q

method foo(x:T)
returns (y:T)
requires P
ensures Q

{ S }

27

Preliminary encoding

Christoph Matheja – 02245 – Program Verification

Verify caller against specification

assert P[x / a]

var z // reset all vars in z

assume Q[x / a][y / z]

§ Check precondition

§ Reset assigned variables

§ Assume postcondition

method foo(x:T)
returns (y:T)
requires P
ensures Q

{ S }

Call rule
{ P } method foo(x:T) returns (y:T) { Q }

{ P[x / a] } z := foo(a) { Q[x / a][y / z] }

Frame rule for local variables
{ P[x / a] } z := foo(a) { Q[x / a][y / z] }

{ P[x / a] && R } z := foo(a) { Q[x / a][y / z] && R }

28

Encoding of calls: example

Christoph Matheja – 02245 – Program Verification

x := 4
y := 4

z := foo(x)

assert y + z == 20

method foo(p: Int) returns (r: Int)
requires 0 <= p
ensures r == p*p

x := 4

y := 4

assert 0 <= x

var z

assume z == x*x

assert y + z == 20

{ 0 <= 4 Ù "z :: z == 4*4 ==> 4 + z == 20 }

{ 0 <= x Ù "z :: z == x*x ==> 4 + z == 20 }

{ 0 <= x Ù "z :: z == x*x ==> y + z == 20 }

{ "z :: z == x*x ==> y + z == 20 }

{ z == x*x ==> y + z == 20 }

{ y + z == 20 }

{ true }

Framing happens implicitly by not resetting
variables that cannot be changed by the call

29

Permitting LHS variables in argument expressions

Christoph Matheja – 02245 – Program Verification

§ So far: LHS of assignments not
allowed in arguments

§ Parameters in the postcondition refer to values past into the call
§ If result (LHS variable) of call occurs in actual parameters, the assumption after

the havoc conflates the pre-call and post-call values

x := 4

x := inc(x)

assert false

method inc(p: Int) returns (r: Int)
ensures r == p + 1 x := 4

assert true // implicit precondition

var x

assume x == x + 1

assert false

{ "x :: x == x + 1 ==> false }

{ "x :: x == x + 1 ==> false }

{ "x :: x == x + 1 ==> false }

{ x == x + 1 ==> false }

{ false }

{ true }

30

Final encoding

Christoph Matheja – 02245 – Program Verification

§ Check precondition

§ Save pre-call values of arguments

§ Reset assigned variables

§ Assume postcondition, with actual

arguments evaluated in the pre-state

assert P[x / a]

var e:T := a

var z // reset all vars in z

assume Q[x / e][y / z]

31

Example

Christoph Matheja – 02245 – Program Verification

x := 4

x := inc(x)

assert false

method inc(p: Int) returns (r: Int)
ensures r == p + 1 x := 4

assert true // implicit precondition

e := x

var x

assume x == e + 1

assert false

{ "x’ :: x’ == 4 + 1 ==> false }

{ "x’ :: x’ == x + 1 ==> false }

{ "x’ :: x’ == x + 1 ==> false }

{ "x :: x == e + 1 ==> false }

{ x == e + 1 ==> false }

{ false }

{ true }

Note that substituting e by x renames the bound
variable from x to x’ to avoid binding the free
variable x (capture-avoiding substitution)

assert P[x / a]

var e:T := a

var z // reset all vars in z

assume Q[x / e][y / z]

32

§ Language extension to PL2

§ Partial correctness reasoning

§ Encoding

§ Global Variables

§ Termination

Christoph Matheja – 02245 – Program Verification

Outline

33

Global variables

Christoph Matheja – 02245 – Program Verification

§ We temporarily re-introduce global variables,
such that procedures can have side effects
- Viper has no global variables, but a global heap (later)

§ Specifications of side effects need to relate the
state after the call to the state before:

“The value of g is one larger than before the call.”

§ Postconditions may include old(x) expressions
to refer to the pre-state value of global variable x

§ Postconditions are two-state predicates
- Evaluation depends on final and initial state

var g: Int // global variable

method inc()
ensures ??

{
g := g + 1

}

var g: Int // global variable

method inc()
ensures g == old(g) + 1

{
g := g + 1

}

Christoph Matheja – 02245 – Program Verification

Exercise (5min)
§ Propose an approach that enables

framing for method calls in the
presence of global variables.

§ For example, the assertion on the
right should verify when using your
approach.

var g: Int // global variables
var h: Int

method inc()
ensures g == old(g) + 1

{
g := g + 1

}

g := 0
h := 0
inc()
assert h == 0

38

§ Language extension to PL2

§ Partial correctness reasoning

§ Encoding

§ Global Variables

§ Termination

Christoph Matheja – 02245 – Program Verification

Outline

39

Proving termination

Christoph Matheja – 02245 – Program Verification

A method variant is an an expression V that
decreases for every method call
(for some well-founded ordering <).

< has no infinite descending chains

Well-founded Not-well-founded
< over Nat < over Int
⊂ over finite sets < over positive reals

recursive calls

𝑉! > 𝑉" > 𝑉# > 𝑉$ > … > 𝑉%

Method terminates because each
call decreases a variant that cannot
decrease indefinitely

valid: P ==> V >= 0
{ P && V < v } z := foo(a) { Q && V == v }

{ P } z := foo(a) { Q }

V decreases fresh variable

40

Proving termination – encoding

Christoph Matheja – 02245 – Program Verification

method factorial(n: Int)
returns (res: Int)
requires 0 <= n
decreases n // variant

{
if (n == 0) {
res := 1

} else {
res := factorial(n-1)
res := n * res

}
}

method factorial(n: Int)
returns (res: Int)
requires 0 <= n

{
if (n == 0) {
res := 1

} else {
var v: Int := n assert v >= 0
assert n-1 < v
res := factorial(n-1)
assert n == v
res := n * res

}
}

Program with variant annotation
(not supported by default in Viper)

Encoded program

§ Use Viper to prove that
McCarthy’s 91 function (right)
terminates.

Christoph Matheja – 02245 – Program Verification

Exercise

method M(n: Int) returns (r: Int)
requires n >= 0
ensures 100 < n ==> r == n - 10
ensures n <= 100 ==> r == 91

{
if (n > 100) {
r := n - 10

} else {
r := M(n + 11)
r := M(r)

}
}

43

Procedures: wrap-up

Christoph Matheja – 02245 – Program Verification

§ We reason modularly about procedures by choosing
suitable procedure specifications
- Precondition constrains arguments
- Postcondition constrains results

§ Key property: framing

§ Modular verification
- Supports recursion
- Avoids re-verification of clients after implementation changes
- Enables reasoning about unverified code (e.g. libraries)

§ Procedures can be encoded into PL0

set of FOL formulas

PL0

SMTLIB-2 code

unsat sat

PL1 (loops)

MVL

PL2 (procedures)

44

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers We are here

