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Roadmap

Automated verifier

Front-end

4

source code

annotated with Intermediate Verification
e o Language
specifications ‘

Intermediate Verification
Language

Generation of Q

proof obligations
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SMT solver

feedback
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Tentative course outline

Foundational

. Building a Loops and
— — . s —
Reg Soning ST s first verifier procedures
Principles
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models
Front-end
verifiers
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Example — procedure & client

* Procedures
- Define their own scope

- Specify a
{ - May be abstract
r:=x/ 2 :
=6 * p - May be recursive

= Modular verification of calls
- Inspects
- Does not inspect implementations

- Avoid client re-verification if implementation
changes

Respects information hiding

method client() {
var z: Int

assert z == 18

// z := triple(7) € FAILS

-
1
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Example — abstract procedure

method (x: Int)
returns (r: Int)
requires x >= 0
ensures X >=r * pr
ensures x < (r+l1) * (r+l)

method client()

{
var i: Int m
i:= (25)
assert 1 ==

}

Specify a

Have no implementation

Use case: code that cannot be verified

Are assumed correct =» part of trusted codebase

Clients of abstract procedures are identical
to clients of ordinary procedures
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Example — recursive procedure

method

returns (res: Int)

(n: Int)

requires O <= n

ensures

=

-h

~
>
Il

res :
} else
res :

I~ 1l

res =

1 <= res & & n <= res

0) {
1

n * res

(n-1)

= Very weak specification

= \We will soon consider more
intricate contracts

method client() {
var x: Int
X = (5)
assert 5 <= Xx
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Outline

Partial correctness reasoning

Encoding

Global Variables

Termination
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Extending the language (PL2)

Declarations

D ::= method <name>(x:T) (input parameters) distinct
returns (y:T) (output parameters)::::=’ IStinct sequences
requires P (precondition)
ensures Q (postcondition)
{S } (method body) _
| o = All statements are placed in methods
= We consider only well-typed programs
Statements = All variables are local to a method
D 885 aoc (as before) = All parameters are call-by-value
| 7 := <name>(¥) (possibly recursive call) = Methods are not mathematical functions

/ =» no method calls in predicates

tuple of expressions with same types as x
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Semantics via inlining (sketch)

method foo(x:T) returns (y:T) { S }

var n: Int =1
n := double(n)
Z = . i —
z := foo(a) ~ x :=a ;S ; z =y n := doublw Iferent postconditions

“semantically equivalent to”
Semantics again given by fixed points (FP)

WP(z := foo(a), Q) » higher-order FP for each procedure

WP(x :=a ;S ; z :=vy, Q)

\ = total correctness: least FP

tain oth lIs to f .
may cohtain other calls 1o Too = partial correctness: greatest FP
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Procedure inlining

= One could verify procedure calls like macros by
inlining the procedure implementation

= However, inlining has several drawbacks:

it does not work for recursive procedures

it does not work when the implementation is not known
statically (e.g., dynamic binding)

it does not support implementations that cannot be verified
(e.g., foreign functions, binary libraries, complex code)

it increases the program size substantially and slows down
verification

it is not modular; clients need to be re-verified when the
procedure implementation changes

method factorial(n: Int)
returns (res: Int) {

if (n == 0) {
res :=1
1} else {
res := factorial(n-1)

n * res

res

}
¥

void foo(Collection c) {
c.add(“Hello”);

}

void bar(FileOutputStream f) {
f.write(5);
¥

textEncryptor.encrypt(myText);
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Modular reasoning about procedures

Goal: verify procedures

. that is,

independently of their callers

method (n: Int)
returns (res: Int)

Verify that implementation satisfies the

specification
- Rely on precondition
- Check postcondition

Verify every caller against the specification

- Check precondition
- Rely on postcondition

{
res :=n+ 1
}
X = (5)
assert 1 <= x // succeeds
assert x == 6 // fails

O

X
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Outline

= Language extension to PL2

Encoding

Global Variables

Termination
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Proof obligations

method foo(x:T)
returns (y:T)
requires
Procedure implementation satisfies its contract ensures
{s}
valid: S

To handle recursion, proof may assume that all procedures
satisfy their contract approximating WP

= Verify caller against contract

consult declared contract
Call rule j/—-

method foo(x:T) returns (y:T)
{Plx/a]}z:=Foo(a){0[x/allz ? y 11}

I I

account for arguments (assuming z does not appear in a)
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Procedure framing

= We often need to prove that a property is not affected by a call
- For loops, the analogous problem was solved by strengthening the loop invariant

- We cannot strengthen the procedure specification for each call

Call rule

method foo(x:T) returns (y:T)

{

[ x/a]}z:=foo(a) {0 x/allz/y]}

X .

Z .

assert x == Q

(%]
factorial(5)

* To enable framing, we need a dedicated frame rule for local variables

Frame rule for local variables

{ Pl x/a]l}z :=+Foo(a) { Q[

/ a1l ]}

{

[ x / a ]

X1 XI
NI| NI
< X<

} z := foo(a) { O[ x / a ][ ]

}

where no variable in
Z appears free in
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Example — modular reasoning and recursion

= To show: implementation satisfies contract method factorial(n: Int)
returns (res: Int)
res := factorial(n)
{
if (n == 0) {
. . res := 1
= Proof by induction on the number k of calls 1 else {
res := factorial(n-1)
res := n * res
}
}
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Example — modular reasoning and recursion

= To show: implementation satisfies contract method factorial(n: Int)
returns (res: Int)
res := factorial(n)
{

* Proof by induction on the number k of calls else {

o res := factorial(n-1)
= Base case k == 0: For every initial state, res := n * res

there is at most } }

v,
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Example — modular reasoning and recursion

= To show: implementation satisfies contract method factorial(n: Int)
returns (res: Int)
res := factorial(n)
{
if (n == 0) {
. . res := 1
* Proof by induction on the number k of calls } else {
res := factorial(n-1)
* Induction hypothesis: assume for all res :=n * res
executions with at most k calls that calls } }

satisfy the contract

res := factorial(n) | H.
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Example — modular reasoning and recursion

= To show: implementation satisfies contract

res := factorial(n) if (n ==
res =
= Proof by induction on the number k of calls 1 else {

* Induction step: using the induction
hypothesis, show that the implementation res =
satisfies the contract for executions with at

most k + 1 calls.
res .=

res := factorial(n) | H. }

0) {

factorial(n-1)

n * res

N
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Example — partial correctness reasoning

= Method never terminates

- Proof argument becomes cyclic
method toBinary(d: Int) 9 y

returns (res: Int) _ _
requires @ <= d = No induction base!

ensures d % 2 == res % 10 - Technically, we reason about a greatest
toBinary(d/2) fixed point and do co-induction (think:

res * 10 + (d % 2) bisimulation)

res .
res .

Q * |nduction step can be verified

=>» verifies with respect to partial correctness:
whenever execution stops (here: never), the postcondition holds
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Procedures in Viper

method divide(n: Int, d: Int)
returns (q: Int, r: Int)
requires O <= n
requires 1 <= d
ensures n == g*d + r
{
if (n < d) {
q := 0
ro:=n
} else {
g, r := divide(n-d, d)
q :=qg+1
}
}

Multiple pre- / postconditions allowed
- Will be conjoined

Calls are statements
- No calls in (compound) expressions
- Parallel assignment of return values

No return statement: final value of result
variables will be returned

All variables are local
- Framing is straightforward

Verification is modular, with partial
correctness semantics
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Exercise

Write a recursive method sum that yields the = |mplement the method below in a language of
sum of the first n natural numbers. your choice.
Provide a suitable specification. » Run the method on various inputs and form a

hypothesis about its behavior.
Check whether your specification is strong

enough by verifying the client code below. = Formalize your hypothesis as a Viper
specification and verify the method

Sketch the induction proof justifying why your

implementation satisfies the specification method M(n: Int) returns (r: Int)

{
if (n > 100) {

r:=n - 10
1} else {

method main() {

var r: Int
M(n + 11)

M(r)

:= sum(10)

assert r == 55

}

=
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SOlution: SUum funCtion method sum(n: Int) returns (res: Int)
{

Write a recursive method sum that yields the
sum of the first n natural numbers.

Provide a suitable specification.

Check whether your specification is strong
enough by verifying the client code below.

Sketch the induction proof justifying why your

implementation satisfies the specification

method main() {
var r: Int

:= sum(10)

assert r == 55

}
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Solution

method M(n: Int) returns
ensures 100 < n ==>r
ensures n <= 100
{
if (n > 100) {
r:=n - 10

} else {
r:= M(n + 11)
r:= M(r)

}
}

= |mplement the method below in a language of
your choice.

= Run the method on various inputs and form a
hypothesis about its behavior.

= Formalize your hypothesis as a Viper
specification and verify the method

method M(n: Int) returns (r: Int)
{
if (n > 100) {
r:=n - 10
1} else {

r:= M(n + 11)
ro:= M(r)
}

}

=
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Outline

= Language extension to PL2

» Partial correctness reasoning

= Global Variables

= Termination
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method foo(x:T)
returns (y:T)
requires

» Procedure implementation satisfies the specification ensures

{s}

Encoding: procedure bodies

valid: S

- To handle recursion, proof may assume that all procedures satisfy their specifications
- Similarly to loops, this is sound as a correct contract is a pre-fixed point

= Generate one proof obligation per method declaration

assume
// encoding of S

assert

= No proof obligation for abstract methods
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Preliminary encoding

Verify caller against specification

Call rule
method foo(x:T) returns (y:T)

{Plx/a]}z:=Foo(a) {Q0[ x/allz/y]}

Frame rule for local variables

{Plx/a]}rz::=foo(a) {0l x/allz/y]}:
{ P[ x/ a] }z:=foo(a) { Q[ x/allz/y] }
assert P[ X / a ] = Check precondition
var z // reset all vars in z » Reset assigned variables
assume O[ x / a ][z /Yy ] =  Assume postcondition

method foo(x:T)
returns (y:T)
requires
ensures

1S}
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Encoding of calls: example

method foo(p: Int) returns (r: Int) { 0 <=4 A Vz Z == 4%4 ==> 4 + z == 20 }
requires 0 <= p X = 4
ensures r == p*p { @ <= X A VzZ Z == X*X ==> 4 + z == 20 }
y i= 4

X := 4
y := 4
z := foo(x)

assert y + z == 20

assert y + z == 20 { true } (:::)

Framing happens implicitly by not resetting
variables that cannot be changed by the call

(=]
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Permitting LHS variables in argument expressions

method inc(p: Int) returns (r: Int)

ensures r ==p + 1
X =4
X := inc(x)

assert false

» So far: LHS of assignments not
allowed in arguments

{ Vx ¢ x ==x +1
X 1= 4

{ Vx :: x == x + 1 ==> false }

assert true // implicit precondition
{ Vx :: x == x + 1 ==> false }

var Xx

{ Xx == x + 1 ==> false }

assume x == X + 1

{ false }

assert false

{ true }

=> false }

= Parameters in the postcondition refer to values past into the call

» [f result (LHS variable) of call occurs in actual parameters, the assumption after
the havoc conflates the pre-call and post-call values

O
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Final encoding

= Check precondition

assert P[ X / a ] = Save pre-call values of arguments
vare:T := a » Reset assigned variables
var z // reset all vars in z = Assume postcondition, with actual

assume O[ x /¢ 1l y / z ] arguments evaluated in the pre-state
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—
=

Y

Christoph Matheja — 02245 — Program Verification

30



Example

method inc(p: Int) returns (r: Int)

ensures r ==p + 1
X := 4
X := inc(x)
assert false
assert P[ X / a ]

var z // reset all vars 1in z

assume

[ X /

ILy/z]

{ VX’ :: x> == 4 + 1 ==> false }
X 1= 4

{ VX’ :: x’ == x + 1 ==> false }
assert true // implicit precondition
{ VX’ :: x’ == x + 1 ==> false }
e 1= X

{ Vx :: x == e + 1 ==> false }
var X

{ Xx == e + 1 ==> false }

assume x == e + 1

{ false }

assert false

{ true } 0

Note that substituting e by x renames the bound
variable from x to x’ to avoid binding the free
variable x (capture-avoiding substitution)
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Outline

= Language extension to PL2

» Partial correctness reasoning

= Encoding

= Termination
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Global variables

We temporarily re-introduce global variables,

var g:
such that procedures can have
- Viper has no global variables, but a global heap (later) method
{
Specifications of side effects need to } g :=
“The value of g is one larger than before the call.”
Postconditions may include expressions var &:
to refer to the method
Postconditions are { e
- Evaluation depends on final and initial state }

Int // global variable

inc()

g + 1

Int // global variable

inc()

g + 1
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Exercise (5min)

* Propose an approach that enables

framing for method calls in the Vart o TNt/ global varihles
presence of global variables. var h: Int

: method inc()
= For example, the assertion on the ensures g == old(g) + 1

right should verify when using your
approach.

g
h

inc()
assert h ==

= 0
= 0

=
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Framing with global variables: non-solutions

var g: Int // global variables inspect body of callee to determine
UElr 08 Tl which global variables are modified
nethod inc() - Not modular

ensures g == old(g) + 1 - Does not work for abstract methods
{ g : =g+ 1 .
} assume conservatively that all global

variables may be modified

. - Callee needs a specification x == old(x) for all global
ﬁ z g variables it does not change
inc() - Not modular: procedure specifications need to change
assert h == when a new global variable is declared
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—
=

Christoph Matheja — 02245 — Program Verification 35

Y



Framing with global variables: modifies-clauses

var g: Int // global variables o :
var h: Int = We (temporarily) introduce one more annotation

for each procedure declaration

method inc()
modifies g

ensures g == old(g) + 1 » A modifies clause lists all global variables that
t . may be modified by the procedure
} 5= B - All other global variables must remain unchanged
g := 0 = A procedure body can be checked syntactically to
h 7)@ satisfy its modifies clause
1NncC

assert h == (:::)
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Encoding with old-expressions and modifies clauses

varg:T // global variables

method foo(x: Int)
requires P

// subset of g

ensures Q
assert P[ X / 3 ] = Save pre-state value of modified globals
vare:T := a = reset potentially modified global variables
= Assume postcondition, with old-
expressions replaced by pre-state values
var (last substitution is for unmodified

variables)

ol

1Lz/y]l

assume Q[ x /

=
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Outline

= Language extension to PL2

» Partial correctness reasoning

Encoding

Global Variables
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Proving termination

A method variant is an an expression V that
decreases for every method call
(for some well-founded ordering <).

/

< has no infinite descending chains

Well-founded Not-well-founded

< over Nat < over Int

c over finite sets < over positive reals

# recursive calls

—

ViSVe>Va>V, > > Vg

_—

Method terminates because each
call decreases a variant that cannot
decrease indefinitely
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method foo(x:T)

Proving termination returns (7iT)
requires
ensures

A method variant is an an expression V that decreases V

decreases for every method call {s}

(for some well-founded ordering <). precondition ensures V

never becomes negative
Proof obligations for implementation /
valid: V=vVv}S valid: ==> V >= 0
fresh variable saving \ recursive calls are verified using the call rule

initial value of v

f consult contract with decreasing variant as if already proven

Call rule
V < v } method foo(x:T) returns (y:T)

{ V<av)[x/a]}z:i=foo(a) {0 x/allz/y]}
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Proving termination — encoding

method factorial(n: Int)
returns (res: Int)
requires O <= n
// variant

{
if (n == 0) {
res := 1
1} else {
res := factorial(n-1)
res := n * res
}
}

Program with

(not supported by default in Viper)

define V(m) (m) // variant

method factorial(n: Int)
returns (res: Int)
requires O <= n

{
if (n == 0) {
res :=1
1} else {
res := factorial( )
res := n * res
}
}

Encoded program
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Exercise

Use Viper to prove that
McCarthy’s 91 function (right)
terminates.

method M(n: Int) returns

}

requires n >= 0
ensures 100 < n ==>
ensures n <= 100 ==>

r
r

if (n > 100) {
r:=n - 10

} else {
r:= M(n + 11)
r := M(r)

}
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Solution

Use Viper to prove that

McCarthy’'s 91 function (right) {

terminates.

Variant: max(101 —n, 0)

define V(m) ((101-m < @) ? ©

method M(n: Int) returns
requires n >= 0
ensures 100 < n ==>r
ensures n <= 100 ==> r

if (n > 100) {
r:=n - 10
} else {

M(n + 11)

M(r)

: 101-m)
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Procedures: wrap-up

We reason modularly about procedures by choosing
suitable procedure specifications

- Precondition constrains arguments

- Postcondition constrains results

Key property: framing

Modular verification
- Supports recursion

- Avoids re-verification of clients after implementation changes
- Enables reasoning about unverified code (e.g. libraries)

Procedures can be encoded into PLO

-

PLO
\ 4
MVL
4
set of FOL formulas
4 *
SMTLIB-2 code
4
unsat sat

X

O
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