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Roadmap
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source code 
annotated with 
specifications

Automated verifier

Intermediate Verification 
Language

Generation of
proof obligations

Intermediate Verification 
Language

Front-end

SMT solver
feedback

We are here
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Tentative course outline
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Building a 
first verifierSMT solvers

Foundational 
Reasoning 
Principles

Loops and 
procedures

Advanced 
data types

Heaps and 
objects

Abstraction in 
specifications

Permission 
models

Concurrency Front-end
verifiers
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Loops – operationally 

Christoph Matheja – 02245 – Program Verification

Semantics

while (b) { S }, σ ⇒ if (b) { S; while (b) { S } } else { skip }, σ

assert true

Statements
S  ::=  ... |  while (b) { S }

§ If guard b holds, execute S and run loop again
§ If b does not hold, terminate without an effect
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Loops – by example
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assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) {
r := r + i
i := i + 1

}

assert ???

Statements
S  ::=  ... |  while (b) { S }

§ If guard b holds, execute loop body S and repeat
§ If guard b does not hold, terminate

n = 5 (before guard)
i r
1 0
2 1
3 3
4 6
5 10

What should hold after the loop?
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{ P } S { Q } is valid for total correctness iff

1. Safety: 
executing S on any state in P never fails an assertion

2. Partial correctness: 
every terminating execution of S on a state in P ends in a state in Q

3. Termination: 
every execution of S on a state from P stops after finitely many steps

iff verification condition P ==> WP(S, Q) is valid

Christoph Matheja – 02245 – Program Verification

Reminder (see 1.3)



9

§ Safety: loop execution does not fail

§ Partial correctness: postcondition is satisfied if 
the loop terminates

§ Termination of the loop

Christoph Matheja – 02245 – Program Verification

Loops – by example

assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) {
r := r + i
i := i + 1

}

assert r == n * (n+1) / 2
assert n >= 0
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§ Weakest preconditions of loops

§ Partial correctness reasoning

§ Termination

§ Encoding to PL0

Christoph Matheja – 02245 – Program Verification

Outline
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Loops – operationally (reminder)
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Semantics

while (b) { S }, σ ⇒ if (b) { S; while (b) { S } } else { skip }, σ

assert true

Statements
S  ::=  ... |  while (b) { S }

§ If guard b holds, execute S and run loop again
§ If b does not hold, terminate without an effect
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è Solution is a fixed point of  𝑋 = Φ(𝑋)
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Loops – via unrolling

WP(while (b) { S }, Q)

=

WP(if (b) { S; while (b) { S } } else { skip }, Q)

=

(b ==> WP(S, WP(while (b) { S }, Q))) && (!b ==> Q)

::= Φ(WP(while (b) { S }, Q))
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Running example
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while (i <= n) {
{ X[i / i+1][r / r+i] }
r := r + i
{ X[i / i+1] }  
i := i + 1
{ X }

}

assert n >= 0
assert r == n * (n+1) / 2

Φ(X) ::=
(i <= n ==> X[i / i+1][r / r+i]) &&

(!(i <= n) ==> n >= 0 &&
r == n * (n+1) / 2)

Φ(X) ::= (b ==> WP(S, X)) && (!b ==> Q)
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§ (Pred, ==>) is a complete lattice

§ WP(S,_), b ==> _, && are monotone and continuous

§ Φ(𝑋) is monotone and continuous

§ Tarski-Knaster Theorem: Φ 𝑋 has at least one fixed point

§ Which fixed point do we choose if there is more than one?

Christoph Matheja – 02245 – Program Verification

Loops – as fixed points

WP(while (b) { S }, Q) must be a fixed point of

Φ 𝑋 ::= b ==> WP(S, X) && !b ==> Q

reading assignment



1. Determine all fixed points of Φ(𝑋) for the loop on 
the right and an arbitrary Q.

2. Which fixed point corresponds to the weakest 
precondition of the loop, that is, what is 

WP(while(true) { skip }, Q) ?
Hint: recall that WP(S, Q) is the largest predicate P 
such that { P } S { Q } is valid for total correctness.

3. Does your answer change if we reason about partial
instead of total correctness? Why (not)?

Christoph Matheja – 02245 – Program Verification

Exercise
while (true) {
skip // assert true

}

Φ(𝑋) ::= b ==> WP(S, X) 
&& !b ==> Q
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Loops – via weakest precondition
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Weakest precondition of loops
WP(while (b) { S }, Q) ::= fix(Φ)

Φ (X) ::= b ==> WP(S, X) && !b ==> Q
continuous
predicate
transformer

Relative Completeness Theorem (Cook, 1974).
For PL0 programs and predicates, there exists a 
predicate that is logically equivalent to fix(Φ).
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Loops – via weakest precondition

Christoph Matheja – 02245 – Program Verification

Weakest precondition of loops
WP(while (b) { S }, Q) ::= fix(Φ)

Φ (X) ::= b ==> WP(S, X) && !b ==> Q
continuous
predicate
transformer
that depends
on  b, S, Q

Kleene’s fixed point theorem (applied to loops)
fix(Φ) = sup {Φ% (false) | 𝑛 ∈ ℕ }

least fixed point may only be reached in the limit

false

Φ(false)

Φ!(false)

Φ(Φ(false))

Φ"(false)

.

.

.
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If we can find a parameterized predicate I(k) such that

1. I(0) ==> Φ(false)

2. I(k+1) ==> Φ(I(k))

3. P ==> lim
&→(

I(k) ,

then P ==> wp(while (b) { S }, Q).

Christoph Matheja – 02245 – Program Verification

Loops – a proof rule using Kleene’s theorem

false

Φ (false)

Φ# (false)

I(0)

Φ" (false)

.

.

.

I(1)

lim
$→"

I(k)

= fix(Φ)
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If we can find a parameterized predicate I(k) such that

1. I(0) ==> Φ(false)

2. I(k+1) ==> Φ(I(k))

3. P ==> lim
!→#

I(k) ,

then P ==> wp(while (b) { S }, Q).

Christoph Matheja – 02245 – Program Verification

Example – via Kleene’s theorem
assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) {
r := r + i
i := i + 1

}

assert r == n * (n-1)/2I(k) ::= n >= 0 &&
(i > n ==> r == n * (n+1) / 2) &&
forall j:Int :: 

1 <= j && j <= k ==>
i == n – j + 1 ==>

r == (n-j) * (n-j+1) / 2
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If we can find a parameterized predicate I(k) such that

1. I(0) ==> Φ(false)

2. I(k+1) ==> Φ(I(k))

3. P ==> lim
!→#

I(k) ,

then P ==> wp(while (b) { S }, Q).

Christoph Matheja – 02245 – Program Verification

Example – via Kleene’s theorem

lim
$→"

I(k) = n >= 0 &&
(i > n ==> r == n * (n+1) / 2) &&
forall j:Int :: 

1 <= j && j <= k ==>
i == n – j + 1 ==>

r == (n-j) * (n-j+1) / 2

èProves total correctness

èFinding I(k) is challenging

èStep 3 is hard to automate

assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) {
r := r + i
i := i + 1

}

assert r == n * (n-1)/2
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§ Weakest preconditions of loops

§ Partial correctness reasoning

§ Termination

§ Encoding to PL0

Christoph Matheja – 02245 – Program Verification

Outline
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§ Safety: loop execution does not fail
- No assertion (failure) in the loop

§ Partial correctness: postcondition is satisfied if 
the loop terminates
- Before every loop iteration: r == (i - 1) * i / 2
- Upon termination we also know i == n + 1

Christoph Matheja – 02245 – Program Verification

Loops – by example with proof arguments
assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) 
invariant ...

{

r := r + i
i := i + 1

}

assert n >= 0
assert r == n * (n+1) / 2
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Loops – fixed points for partial correctness

Christoph Matheja – 02245 – Program Verification

{ Q }  { P } S

WLP(S, Q)

execution

reasoning

while (true) {
skip

}

Φ 𝑋 =  𝑋

èPick greatest fixed 
point FIX(Φ)

WLP(while(true) { skip }, Q)
= 
true 
=
FIX(Φ)

Backward VC: P ==> WLP(S, Q)
(are all initial states from which every 
terminating execution of S ends in Q)
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Loops – weakest liberal preconditions
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Backward VC: P ==> WLP(S, Q)
(are all initial states from which every 
terminating execution of S ends in Q)

S WLP(S, Q)

var x forall x :: Q

x := a Q[x / a]

assert R R && Q

assume R R ==> Q

S1; S2 WLP(S1, WLP(S2, Q))

S1 [] S2 WLP(S1, Q) && WLP(S2, Q)

Weakest liberal precondition of loops
WLP(while (b) { S }, Q) ::= FIX(Φ)

Φ (X) ::= b ==> WLP(S, X) && !b ==> Q
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Loops – inductive invariants

Christoph Matheja – 02245 – Program Verification

Weakest liberal precondition of loops
WLP(while (b) { S }, Q) ::= FIX(Φ)
Φ (X) ::= b ==> WLP(S, X) && !b ==> Q

Tarski-Knaster fixed point theorem
FIX(Φ) = sup { I | I ==> Φ(I) }

Inductive invariant rule
I ==> Φ(I)

I ==> WLP(while (b) { S }, Q)

greatest fixed point

pre-fixed point

loop invariant
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§ Predicate that holds before every iteration

§ Can be viewed as an induction proof
- Base: invariant holds before the loop
- Hypothesis: invariant holds before a fixed 

number of loop iterations
- Step: invariant is preserved after performing 

one more iteration

Christoph Matheja – 02245 – Program Verification

Loop invariants

{ I && b } S { I }

{ I } while (b) { S } { I && !b }

invariant I is preserved by one iteration

Q

P

S

!b

b

I

{ P } S { Q }

How can we derive this rule? 
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§ Predicate that holds before every iteration

§ Can be viewed as an induction proof
- Base: invariant holds before the loop
- Hypothesis: invariant holds before a fixed 

number of loop iterations
- Step: invariant is preserved after performing 

one more iteration

Christoph Matheja – 02245 – Program Verification

Loop invariants

i := 1
r := 0

while (i <= n) {

r := r + i

i := i + 1

}

{ 0 <= r }

{ 0 <= r && 1 <= i }

{ 0 <= r && 1 <= i && i <= n }
==> 
{ 0 <= r + i && 1 <= i + 1 }

{ 0 <= r && 1 <= i + 1 }

{ 0 <= r && 1 <= i }

{ 0 <= r && 1 <= i && !(i <= n) }
==>

{ I && b } S { I }

{ I } while (b) { S } { I && !b }

loop invariant I is preserved by one iteration
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§ Some predicates hold before every 
iteration but are not loop invariants

§ We must be able to prove that the 
invariant is preserved

§ Often requires strengthening the 
proposed invariant

Christoph Matheja – 02245 – Program Verification

Inductive loop invariants

{ I && b } S { I }

{ I } while (b) { S } { I && !b }

i := 1
r := 0

while (i <= n) {

r := r + i

i := i + 1

}

{ 0 <= r }

{ 0 <= r && i <= n }
==>  // proof fails
{ 0 <= r + i }

{ 0 <= r }

{ 0 <= r }

{ 0 <= r && !(i <= n) }
==>
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§ We require loop invariants to 
be provided by the 
programmer

§ Writing loop invariants is one 
of the main challenges for 
program verification

§ Preservation of invariants 
needs to be checked as a 
side condition
- invariant wrong è failure

Christoph Matheja – 02245 – Program Verification

PL1: PL0 + loops with invariants

i := 1; r := 0

while (i <= n) 
invariant 0 <= r && 1 <= i

{
r := r + i
i := i + 1

}

PL1 Statements
S ::= PL0... | while (b) invariant I { S }

Approximation of WLP with invariants
WLP(while (b) invariant I { S }, Q) ::= I

if predicate I is a loop invariant
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§ Viper supports multiple invariants
- all invariants are conjoined

§ Error messages indicate why an invariant does not hold

Christoph Matheja – 02245 – Program Verification

Loops – in Viper

var x: Int

while (0 < x) 
invariant 0 < x

{ … } 

var x: Int
x := 5

while (0 < x) 
invariant 0 < x

{ 
x := x - 1

} 

“Loop invariant might 
not hold on entry”

“Loop invariant might 
not be preserved”

while (0 < x) 
invariant 0 < x
invariant x < 10

{ … } 



35

Demo

Christoph Matheja – 02245 – Program Verification

method main() {
var n: Int
var i: Int
var r: Int

assume n >= 0

i := 1
r := 0

while (i <= n) 
invariant ??

{
r := r + i
i := i + 1

}

assert r == n * (n+1) / 2
}



Exercise
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method main() {
var M: Int
var N: Int
var res: Int 

assume N > 0 && M >= 0 

var m: Int := M
res := 0

while (m >= N) 
invariant ??

{
m := m - N
res := res + 1

}

assert M == res * N + m
}

method main() {
var n: Int; var m: Int; var res: Int

assume n >= 0 && m >= 0

var x: Int := n
var y: Int := m 
res := 0

while (x > 0) 
invariant ??

{
if (x % 2 == 1) {
res := res + y

}
x := x / 2  // right shift
y := y * 2  // left shift

}

assert res == n * m
}
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§ Safety: loop execution does not fail
- No assertion (failure) in the loop

§ Partial correctness: postcondition is satisfied if 
the loop terminates
- Before every loop iteration: r == (i - 1) * i / 2
- Upon termination we also know i == n + 1

Christoph Matheja – 02245 – Program Verification

Loops – by example with proof arguments
assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) 
invariant ...

{

r := r + i
i := i + 1

}

assert n >= 0
assert r == n * (n+1) / 2
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§ Weakest preconditions of loops

§ Partial correctness reasoning

§ Termination

§ Encoding to PL0

Christoph Matheja – 02245 – Program Verification

Outline
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Proving termination

Christoph Matheja – 02245 – Program Verification

A loop variant is an an expression V that 
decreases in every loop iteration 
(for some well-founded ordering <).

A loop terminates iff there exists a loop variant. 

< has no infinite descending chains

Well-founded Not-well-founded
< over Nat < over Int
⊂ over finite sets < over positive reals

# loop iterations

𝑉$ > 𝑉% > 𝑉& > 𝑉' > … > 𝑉!

Loop must stop after some finite 
number 𝑘 of iterations because < 
has no infinite descending chains

{ I && b && V == z } S { I && V < z }

{ I } while (b) { S } { I && !b }

old value of variant (>= 0) V decreases
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§ Termination is experimental in Viper

§ We can model variants with ghost code
- code that does not affect execution
- can be safely removed again
- example: variables that keep track of old values

Christoph Matheja – 02245 – Program Verification

Example – loops with variants

{ I && b && V == z } S { I && V < z }

{ I } while (b) { S } { I && !b }

old value of variant (>= 0) V decreases

assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) 
{
var z: Int := n - i + 1
assert z >= 0
r := r + i
i := i + 1
assert n - i + 1 >= 0
assert n - i + 1 < z

}

assert n >= 0
assert r == n * (n+1) / 2

V = n – i + 1
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§ Safety: loop execution does not fail
- No assertion (failure) in the loop

§ Partial correctness: postcondition is satisfied if 
the loop terminates
- Before every loop iteration: r == (i - 1) * i / 2
- Upon termination we also know i == n + 1

§ Termination of the loop
- n – i + 1 >= 0, always
- n – i + 1 decreases in every loop iteration

Christoph Matheja – 02245 – Program Verification

Loops – by example with proof arguments
assume n >= 0

var i: Int := 1
var r: Int := 0

while (i <= n) 
invariant ...

{
z := variant

r := r + i
i := i + 1
assert variant < z

}

assert n >= 0
assert r == n * (n+1) / 2



45

§ Weakest preconditions of loops

§ Partial correctness reasoning

§ Termination

§ Encoding to PL0

Christoph Matheja – 02245 – Program Verification

Outline
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Encoding of loops: naive attempt
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§ Check that loop invariant is 
preserved via a separate proof 
obligation

§ Verify the surrounding code by 
replacing the loop with statements 
that check and use the loop invariant

assert I

// havoc (reset) the state
var x; var y; // ...

assume I
assume !b

assume I
assume b

// encoding of S

assert I

{ I && b } S { I }

{ I } while (b) { S } { I && !b }
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Loop framing

assert I

// havoc (reset) the state
var x; var y; // ...

assume I
assume !b

{ I && b } S { I }

{ I } while (b) { S } { I && !b }

§ We often need to prove that a property 
is not affected by a loop

§ Proving the preservation of a property 
across operations is called framing

§ Our rule and our preliminary encoding 
require all framed properties to be 
conjoined to the loop invariant

x := 0

while (false) 
invariant true

{ skip }

assert x == 0
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Improved encoding for surrounding code

Christoph Matheja – 02245 – Program Verification

§ It is sufficient to havoc those variables that get assigned to in the loop body
- all other variables will not change
- we do not forget their values

§ We call the assigned variables loop targets

assert I

// havoc all loop targets

assume I
assume !b

x := 0

while (false) 
invariant true

{ skip }

assert x == 0

Frame rule
{ P } S { Q }   S modifies no var. in R

{ P && R } S { Q && R }
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Improved encoding of invariant preservation
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§ If we check the invariant in a separate proof, we also check it for states we can 
never reach given the remaining code

§ Solution check loop preservation after prior code

assume I
assume b

// encoding of S

assert I

x := 0

while (true) 
invariant true

{ assert x == 0 }

// prior code
// reset all loop targets
assume I
assume b

// encoding of S

assert I

x := 0

while (true) 
invariant true

{ assert x == 0 }

invariant is checked 
for x == -1
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Final loop encoding
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// prior code

assert I

// havoc all loop targets

assume I

{
assume b

// encoding of S

assert I
assume false

} [] {
assume !b

}

// subsequent code

// prior code
assert I

// havoc all loop targets
assume I

assume !b
// subsequent code

// prior code
// havoc all loop targets
assume I
assume b

// encoding of S

assert I



§ Explain why the right program 
verifies for the final loop encoding 
but not for the naive one.

§ More exercises online and in code 
files (13-homework.vpr)

Christoph Matheja – 02245 – Program Verification

Exercise

assume x > 17
var z: Int := 1
var y: Int := x

while (y > 0) 
invariant y >= 0

{
y := y - z

}

assert y >= 0
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Loops: wrap-up

Christoph Matheja – 02245 – Program Verification

set of FOL 

PL0

SMTLIB-2 code

unsat sat

PL1 (loops)

MVL


