02245 — Chapter 4

LOOPS & PROCEDURES

=
(=

Y

Christoph Matheja — 02245 — Program Verification

Roadmap

Automated verifier

Front-end

4

source code

annotated with Intermediate Verification
e o Language
specifications ‘

Intermediate Verification
Language

Generation of Q

proof obligations

3

SMT solver

feedback

We are here

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Tentative course outline

Foundational

. Building a Loops and
— — . s —
Reg Soning ST s first verifier procedures
Principles
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models
Front-end
verifiers

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

02245 — Chapter 4.1

LOOPS

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Loops — operationally

Statements
S ::=

Semantics

= |f guard b holds, execute S and run loop again
= |f b does not hold, terminate without an effect

, 0 =

if (b) { S; } else { skip }, ©

\

assert true

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Loops — by example

Statements = |f guard b holds, execute loop body S and repeat
S ::= ... | while (b) { S} = |f guard b does not hold, terminate
assume n >= n = 5 (before guard)
° | r
var 1: Int : 1 0
var r: Int :
2 1
while (i <= n) { 3 3
r:=r +1i 4 6
i :=1 + 1 5 10

¥

227
assert #7: What should hold after the loop?

»

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Reminder

IS valid for Iff

executing S on any state in P never fails an assertion

every terminating execution of S on a state in P ends in a state in

every execution of S on a state from P stops after finitely many steps

iff verification condition IS valid

(see 1.3)

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Loops — by example

loop execution does not falil

postcondition is satisfied if

the loop terminates

of the loop

assume n >=

var 1i:
var r:

while (i

ro:=
i :=

}

assert
assert

r+ i
+ 1

i

<

v

Int :
Int :

0

* (n+1) / 2

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Outline

= Partial correctness reasoning

= Termination

= Encoding to PLO

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

11

Loops — operationally (reminder)

Statements = |f guard b holds, execute S and run loop again
S = ... | = |f b does not hold, terminate without an effect
Semantics
, 0 = 1if (b) { S; } else { skip }, o

\

assert true

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

12

Loops — via unrolling

WP(if (b) { S; while (b) { S } } else { skip }, Q)

(b ==> WP(S,)) & (!b ==> Q)

ci= P)

=» Solution is a fixed point of

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

13

Running example

d(X) ::= (b ==> WP(S,

)) 8& (b ==> Q) while (i <= n) {

r:i=r +1
i:=1+1
¥
) &&

assert
assert

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

14

Loops — as fixed points

must be a fixed point of

(Pred, ==>) Iis acomplete lattice
WP(S,), b ==> _, && are monotone and continuous
IS monotone and continuous

Tarski-Knaster Theorem: has at least one fixed point

=~ reading assignment

Which fixed point do we choose if there is more than one?

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

15

Exercise

1.

2.

Determine all fixed points of ®(X) for the loop on
the right and an arbitrary Q.

Which fixed point corresponds to the weakest
precondition of the loop, that is, what is

WP(while(true) { skip }, Q) ?

Hint: recall that WP(S, Q) is the largest predicate P
suchthat{ P } S { Q } is valid for total correctness.

3.

Does your answer change if we reason about partial
instead of fotal correctness? Why (not)?

while (true) {

¥

skip // assert true

d(X) ::= b ==> WP(S, X)
&& !'b ==> Q

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Loops — via weakest precondition

Weakest precondition of loops
. WP(while (b) { S }, Q) ::= fix(®d)
continuous
predicate \
transformer

c:= b ==> WP(S, X) & !b ==> Q

Relative Completeness Theorem (Cook, 1974).

For PLO programs and predicates, there exists a
predicate that is logically equivalentto fix(®).

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

19

Loops — via weakest precondition

continuous

transformer
that depends
on b, S, Q

Weakest precondition of loops
WP(while (b) { S }, Q) ::= fix(®D)
precicate T~ D (X) 1:= b ==> WP(S, X) & b ==> Q

Kleene’s fixed point theorem (applied to loops)

fix (D)

= sup {D"(

/

least fixed point may only be reached in the limit

) | neN }

D= (

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

20

Loops — a proof rule using Kleene’s theorem

If we can find a parameterized predicate

3.

P

==>

> (

==

lim

k—>oo

such that

(false)

(

)

)

then P ==> wp(while (b) { S %, Q).

|
= fix(D)

—) — — —

lim

Kk—o0

false

false

false

false

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

21

Example — via Kleene's theorem

If we can find a parameterized predicate such that assume n >= 0

=> ®(false) var i: Int :=1
var r: Int := 0
=> D)

while (i <= n) {
3. P ==> (hnl), r:=r +1
k—oo . .
1 =1+ 1
then P ==> wp(while (b) { S }, Q). }

—_—— * -
I(k) ::=n >= 0 && assert r n (n-1)/2

(i >n==>r==n%*(n+tl) / 2) &&
forall j:Int ::

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Example — via Kleene's theorem

If we can find a parameterized predicate such that
==> O (false)
==> ()

3. P ==> (1nn),

k—o0

then P ==> wp(while (b) { S }, Q).

lim I(k) = n >= 0 &&

k— o0
(i >n==>r==n%*(n+tl) / 2) &&
forall j:Int

assume n >= 0

var i: Int := 1
var r: Int := ©

while (i <= n) {
r:=r+1
i:=14+1

}

assert r == n * (n-1)/2

=>» Proves total correctness
=» Finding I(k) is challenging
=>» Step 3 is hard to automate

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Outline

= \Weakest preconditions of loops

= Termination

= Encoding to PLO

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

24

Loops — by example with proof arguments

loop execution does not falil assume n >= 0 O
- No assertion (failure) in the loop var i: Int := 1
var r: Int := 0
postcondition is satisfied if ~ while (i <= n)
: ~—
the loop terminates ‘
- Before every loop iteration: r == (1 - 1) * i / 2
- Upon termination we also know i == n + 1 .
r:=r+1
1 =1+ 1
}
assert n >= 0
assert r == n * (n+l1) / 2
01U _ . _—
= Christoph Matheja — 02245 — Program Verification 25

Loops — fixed points for partial correctness

{7} S { Q}

Backward VC: P ==> WLP(S, Q)
(are all initial states from which every
terminating execution of S ends in Q)

execution

~

-

WLP(while(true) { skip }, Q)

while (true) { = dX) = X
ki
} TP ’:r'ue => Pick greatest fixed
FIX(CD) p0|nt FIX(CD)

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 26

Loops — weakest liberal preconditions

s wes, 9

var X forall x :: Q
Backward VC: P ==> WLP(S, Q) X := a Q[x / a]
(are all initial states from which every assert R R && Q
terminating execution of S ends in Q) assume R R ==> Q

S1; S2 WLP(S1, WLP(S2, Q))

S1 [] S2 WLP(S1, Q) && WLP(S2, Q)

Weakest liberal precondition of loops
WLP(while (b) { S }, Q) ::= FIX(D)
D (X) 1:= b ==> WLP(S, X) & !b ==> Q

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

27

Loops — inductive invariants

Weakest liberal precondition of loops

— greatest fixed point

WLP(while (b) { S }, Q) ::= FI)(CD)
D (X) 1:=b ==> WLP(S, X) & & !b ==> Q

Tarski-Knaster fixed point theorem

— pre-fixed point

FIX(®) = sup {

Inductive invariant rule
loop invariant ==> ®(I)

\ ==> WLP(While (b) { S }: Q)

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

28

Loop invariants

* Predicate that holds before every iteration

iInvariant I is preserved by one iteration

N\

{I18DbYS{I}
{1 } while (b) { S} { T && 'b }

How can we derive this rule?

= Can be viewed as an induction proof

- Base: invariant holds before the loop

- Hypothesis: invariant holds before a fixed
number of loop iterations

- Step: invariant is preserved after performing
one more iteration

{P}rs{Q}

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

29

Loop invariants

» Predicate that holds before every iteration i o= 1

r:=20
loop invariant I is preserved by one iteration
\\\ {0 <k=r && 1<=1}
S while (i <= n) {
{0 <k=r && 1 <=1 8&& i <=n}
while (b) { S } _=>
{0<=r+18&& 1<x=1+11}
r:=r+i
{0<=r&&1<=1+11}
= Can be viewed as an induction proof i=1+1 |
- Base: invariant holds before the loop ; 0<=r&&1<1}
- Hypothesis: invariant holds before a fixed {0 <=r 8 1 <=3i & !(i <= n) }
number of loop iterations ==
- Step: invariant is preserved after performing {@<=r}

one more iteration

O

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

31

Inductive loop invariants

S

while (b) { S }

= Some predicates hold before every
iteration but are not loop invariants

= \We must be able to prove that the
Invariant is preserved

» Often requires strengthening the
proposed invariant

while (i <= n) {
{0 <=r && i<=n}

==> [/ proof fails
{0<=r +1}
r:=r+i
{0 <=r}
i:=1+1
{0<=r1}
}
{0 <=r && !(i <=n) }
==>
{0 <=r}

X

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

32

PL1: PLO + loops with invariants

PL1 Statements = We require loop invariants to

S ::= PLO... | while (b) { S } be provided by the
programmer

Approximation of WLP with invariants

WLP(while (b) 1S}, Q ::= = Writing loop invariants is one

if predicate 1 is a loop invariant of the main challenges for

program verification

while (i <= n) = Preservation of invariants
invariant 9 <= r & 1 <= i needs to be checked as a
{ side condition
ri=r + i . . .
: : - invariant wrong =» failure
1 := 1+ 1

¥

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Loops — in Viper

= Viper supports multiple invariants

: : . while (0 < x)
- all invariants are conjoined

invariant 0 < x
invariant x < 10

{ .}

» Error messages indicate why an invariant does not hold

var x: Int var x: Int

“Loop invariant might X 8= 2

while (@ < x) not hold on entry”

invariant 0 < x while (0 < x)
{ ..} invariant 0 < x

{

X =X -1

}

“Loop invariant might

not be preserved”

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

34

Demo

method main() {

var n: Int
var i: Int
var r: Int

assume n >= 0

i:=1

r:=09

while (i <= n)
invariant ??

{
r:=r+i
i:=1+1
}
assert r == n * (n+l) / 2

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

35

Exercise

method main() { method main() {
var M: Int var n: Int; var m: Int; var res:
var N: Int
var res: Int

assume N > 0 && M >= 0

assume n >= && m >= 0

var Xx: Int :=n
var y: Int :=m
var m: Int := M = 0

2 while (x > 9)
while (m >= N) invariant ??
invariant ?? {
if (x % 2 == 1) {
m - N res :=res +y
=res + 1 }
X 2 // right shift
2 // left shift

assert ==res * N + m A

}

assert

Christoph Matheja — 02245 — Program Verification

Loops — by example with proof arguments

loop execution does not falil assume n >= 0 O
- No assertion (failure) in the loop var i: Int := 1
var r: Int := 0
postcondition is satisfied if ~ while (i <= n)
: ~—
the loop terminates ‘
- Before every loop iteration: r == (1 - 1) * i / 2
- Upon termination we also know i == n + 1 .
r:=r+1
1 =1+ 1
}
assert n >= 0
assert r == n * (n+l1) / 2
01U _ . _—
= Christoph Matheja — 02245 — Program Verification 40

Outline

= \Weakest preconditions of loops

= Partial correctness reasoning

= Encoding to PLO

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

41

Proving termination

A loop variant is an an expression V that
decreases in every loop iteration
(for some well-founded ordering <).

/

< has no infinite descending chains

Not-well-founded

< over Int

Well-founded
< over Nat

c over finite sets < over positive reals

A loop terminates iff there exists a loop variant.

loop iterations

—

ViSVe>Va>V, > > Vg

_—

Loop must stop after some finite
number k of iterations because <
has no infinite descending chains

old value of variant (>= 0) V decreases

\ \
z } S{I&& V<« z}

{I8 b && V ==
{ T } while (b) { S} { I & Ib}

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 42

Example — loops with variants

assume n >= 0
old value of variant (>= 0) V decreases var i: Int :=1
\ \ var r: Int := 0
V == z S V < 7 while (i <= n) V=n-1+1
: {
while (b) { S } n-1i+1
Z
ro:=r +
i :=1+
= Termination is experimental in Viper : i ; 1
}
= \We can model variants with assert n >= @
- code that does not affect execution assert r == n * (n+l) / 2
- can be safely removed again
- example: variables that keep track of
DTU _ . .
Christoph Matheja — 02245 — Program Verification 43

Y

Loops — by example with proof arguments

= Safety: loop execution does not fail assume n >= 0 O
- No assertion (failure) in the loop var i: Int := 1
var r: Int := 0
= Partial correctness: postcondition is satisfied if < while (i <= n)
. % ° °
the loop terminates : HNELEIEINE oo o
) . e .
Before every loop iteration: r == (1 - 1) i/ 2 2 .= variant
- Upon termination we also know i == n + 1 .
r:=r +1i
i:=14+1
= Termination of the loop _—e) assert variant < z
- n -1+ 1 >= 0,always }
- n - 1 + 1 decreases in every loop iteration assert n >= 0
assert r == n * (n+l1) / 2

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

44

Outline

» Weakest preconditions of loops
= Partial correctness reasoning

= Termination

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

45

Encoding of loops: naive attempt

S
while (b) { S }

» Check that loop invariant is = Verify the surrounding code by
preserved via a separate proof replacing the loop with statements
obligation that check and use the loop invariant

assume I assert I
assume b

// havoc (reset) the state

// encoding of S var x; var y; // ...

assume I
assert I assume !b

(=]
—
=

Christoph Matheja — 02245 — Program Verification 46

Y

Loop framing

S

X :=0
while (false)

while (b) { S }

assert I

// havoc (reset) the state
var x; vary; // ...

assume I
assume !b

invariant true
{ skip }

assert x == 0 Q

= We often need to prove that a property
Is not affected by a loop

= Proving the preservation of a property
across operations is called framing

= Qur rule and our preliminary encoding
require all framed properties to be
conjoined to the loop invariant

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 47

Improved encoding for surrounding code

= |t is sufficient to havoc those variables that get assigned to in the loop body

- all other variables will not change

- we do not forget their values Frame rule

{P}S{Q} S modifies no var. in
{P rsA{Q }

= We call the assigned variables loop targets

assert I X ‘= @
// havoc all loop targets while (false)
assume I invariant true

{ skip }

assume !b
assert x ==

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 48

Improved encoding of invariant preservation

= |[f we check the invariant in a separate proof, we also check it for states we can

never reach given the remaining code

assume I X =0

EEL o while (true)

// encoding of S invariant true
assert T { assert x

= Solution check loop preservation after prior code

// prior code X =0
// reset all Lloop targets while (true)
assume I

assume b
// encoding of S

assert I

{ assert x

invariant true

invariant is checked

forx == -1

X

v,

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

49

Final loop encoding

// prior code
// havoc all Lloop targets
assume I

assume b
// encoding of S

assert I

// prior code
assert I

// havoc all Lloop targets
assume I

assume !b
// subsequent code

// prior code
assert I
// havoc all Lloop targets

assume I

{

assume b
// encoding of S

assert I
assume false

PO A

assume !b
}

// subsequent code

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

50

Exercise

= Explain why the right program assume x > 17

verifies for the final loop encoding

but not for the naive one.

More exercises online and in code

files (13-homework.vpr)

var z: Int :=
var y: Int :=

while (y > 9)
invariant y >= 0

assert y >= 0

=
—
=

i

Christoph Matheja — 02245 — Program Verification

Loops: wrap-up

PLO

-

L

set of FOL

4
SMTLIB-2 code

4
unsat

9

» » 5 b»

70
Q
—

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

54

