02245 – Chapter 4

LOOPS & PROCEDURES

Roadmap

Tentative course outline

02245 – Chapter 4.1

LOOPS

Loops – operationally

- If guard b holds, execute S and run loop again
- If b does not hold, terminate without an effect

Loops – by example

- If guard b holds, execute loop body S and repeat
- If guard b does not hold, terminate

{ P } S { Q } is valid for total correctness iff

1. Safety:

executing S on any state in P never fails an assertion

2. Partial correctness:

every terminating execution of S on a state in P ends in a state in Q

3. Termination:

every execution of S on a state from P stops after finitely many steps

iff verification condition P => WP(S, Q) is valid

Loops – by example

Safety: loop execution does not fail

 Partial correctness: postcondition is satisfied if the loop terminates

Termination of the loop

```
assume n \ge 0
var i: Int := 1
var r: Int := 0
while (i <= n) {</pre>
  r := r + i
  i := i + 1
}
assert r == n * (n+1) / 2
assert n \ge 0
```

Outline

- Weakest preconditions of loops
- Partial correctness reasoning
- Termination
- Encoding to PL0

Loops – operationally (reminder)

- If guard b holds, execute S and run loop again
- If b does not hold, terminate without an effect

Loops – via unrolling

```
WP(while (b) { S }, Q)
=
WP(if (b) { S; while (b) { S } } else { skip }, Q)
=
(b ==> WP(S, WP(while (b) \{ S \}, Q))) \&\& (!b ==> Q)
::= \Phi(WP(while (b) \{ S \}, Q))
```

 \rightarrow Solution is a fixed point of $X = \Phi(X)$

Running example

$$\Phi(X) ::= (b ==> WP(S, X)) \&\& (!b ==> Q)$$

```
while (i <= n) {</pre>
 { X[i / i+1][r / r+i] }
  r := r + i
  { X[i / i+1] }
  i := i + 1
  { X }
assert n >= 0
assert r == n * (n+1) / 2
```

Loops – as fixed points

 $WP(while (b) \{ S \}, Q) must be a fixed point of$ $\Phi(X) ::= b ==> WP(S, X) \&\& !b ==> Q$

- (Pred, ==>) is a complete lattice
- WP(S,_), b ==> _, && are monotone and continuous
- $\Phi(X)$ is monotone and continuous
- Tarski-Knaster Theorem: $\Phi(X)$ has at least one fixed point
- Which fixed point do we choose if there is more than one?

reading assignment

Exercise

- 1. Determine *all* fixed points of $\Phi(X)$ for the loop on the right and an arbitrary Q.
- 2. Which fixed point corresponds to the weakest precondition of the loop, that is, what is WP(while(true) { skip }, Q) ? Hint: recall that WP(S, Q) is the largest predicate P such that { P } S { Q } is valid for total correctness.
- 3. Does your answer change if we reason about *partial* instead of *total* correctness? Why (not)?

```
while (true) {
    skip // assert true
}
```

 $\Phi(X) ::= b ==> WP(S, X)$ && !b ==> Q

Loops – via weakest precondition

Ν

continuous – predicate transformer

Relative Completeness Theorem (Cook, 1974).

For PL0 programs and predicates, there exists a predicate that is logically equivalent to $fix(\Phi)$.

Loops – via weakest precondition

least fixed point may only be reached in the limit

Loops – a proof rule using Kleene's theorem

If we can find a parameterized predicate I(k) such that

- 1. $I(0) \implies \Phi(false)$
- 2. $I(k+1) = \Phi(I(k))$

3. P ==>
$$\left(\lim_{k\to\infty} \mathbf{I}(k)\right)$$
,

Example - via Kleene's theorem

If we can find a parameterized predicate I(k) such that

1. $I(0) \implies \Phi(false)$

2. $I(k+1) = \Phi(I(k))$

3. P ==> $\left(\lim_{k\to\infty} \mathbf{I}(k)\right)$,

then $P == wp(while (b) \{ S \}, Q).$

```
assume n >= 0
var i: Int := 1
var r: Int := 0
while (i <= n) {
    r := r + i
    i := i + 1
}
assert r == n * (n-1)/2</pre>
```

Example – via Kleene's theorem

If we can find a parameterized predicate I(k) such that

1. $I(0) \implies \Phi(false)$

2. $I(k+1) == \Phi(I(k))$

3. P ==> $\left(\lim_{k\to\infty} \mathbf{I}(k)\right)$,

then $P == wp(while (b) \{ S \}, Q).$

$\lim_{k \to \infty} I(k) = n \ge 0 \&\&$	
(i > n ==> r ==	n * (n+1) / 2) &&
<pre>forall j:Int ::</pre>	
1 <= j <mark>&& j</mark>	<mark>-<=-</mark> k ==>
i == n – j + 1 ==>	
r =	= (n-j) * (n-j+1) / 2

assume n >= 0
var i: Int := 1 var r: Int := 0
<pre>while (i <= n) { r := r + i i := i + 1</pre>
}
assert r == n * (n-1)/2

→ Proves total correctness

- → Finding I(k) is challenging
- → Step 3 is hard to automate

Outline

- Weakest preconditions of loops
- Partial correctness reasoning
- Termination
- Encoding to PL0

Loops – by example with proof arguments

```
Safety: loop execution does not fail
                                                          assume n >= 0
 - No assertion (failure) in the loop
                                                          var i: Int := 1
                                                          var r: Int := 0
                                                          while (i <= n)</pre>
Partial correctness: postcondition is satisfied if -
                                                             invariant ...
the loop terminates
                                                          {
 - Before every loop iteration: r == (i - 1) * i / 2
 - Upon termination we also know i == n + 1
                                                            r := r + i
                                                            i := i + 1
                                                          assert n \ge 0
                                                          assert r == n * (n+1) / 2
```

Loops – fixed points for partial correctness

Loops – weakest liberal preconditions

Backward VC: *P* ==> *WLP*(S, Q) (are all initial states from which every terminating execution of S ends in Q)

S	WLP(S, Q)
var x	forall x :: Q
x := a	Q[x / a]
assert R	R && Q
assume R	R => Q
S1; S2	WLP(S1, WLP(S2, Q))
S1 [] S2	WLP(S1, Q) && WLP(S2, Q)

Weakest liberal precondition of loops
WLP(while (b) { S }, Q) ::= FIX(Φ)
Φ(X) ::= b ==> WLP(S, X) && !b ==> Q

Loops – inductive invariants

Loop invariants

Predicate that holds before every iteration

invariant I is preserved by one iteration

while (b) { S } { I && !b }

How can we derive this rule?

{ I && b } S { I }

- Can be viewed as an induction proof
 - Base: invariant holds before the loop
 - **Hypothesis:** invariant holds before a fixed number of loop iterations
 - **Step:** invariant is preserved after performing one more iteration

Loop invariants

Predicate that holds before every iteration

- Can be viewed as an induction proof
 - Base: invariant holds before the loop
 - **Hypothesis:** invariant holds before a fixed number of loop iterations
 - **Step:** invariant is preserved after performing one more iteration

```
i := 1
r := 0
{ <u>0 <= r && 1 <= i</u> }
while (i <= n) {</pre>
{ <u>0 <= r && 1 <= i</u> && i <= n }
==>
\{ 0 \le r + i \& 1 \le i + 1 \}
  r := r + i
\{ 0 \le r \&\& 1 \le i + 1 \}
  i := i + 1
{ <u>0 <= r && 1 <= i</u> }
{ <u>0 <= r && 1 <= i</u> && !(i <= n) }
==>
{ 0 <= r }
```


Inductive loop invariants

- Some predicates hold before every iteration but are not loop invariants
- We must be able to prove that the invariant is preserved
- Often requires strengthening the proposed invariant

PL1: PL0 + loops with invariants

PL1 Statements
S ::= PL0... | while (b) invariant I { S }

Approximation of WLP with invariants
WLP(while (b) invariant I { S }, Q) ::= I
if predicate I is a loop invariant

i := 1; r := 0
while (i <= n)
 invariant 0 <= r && 1 <= i
{
 r := r + i
 i := i + 1
}</pre>

- We require loop invariants to be provided by the programmer
- Writing loop invariants is one of the main challenges for program verification
- Preservation of invariants needs to be checked as a side condition
 - invariant wrong → failure

Loops – in Viper

- Viper supports multiple invariants
 - all invariants are conjoined

```
while (0 < x)
    invariant 0 < x
    invariant x < 10
{ ... }</pre>
```

Error messages indicate why an invariant does not hold

"Loop invariant might not be preserved"

Demo

```
method main() {
  var n: Int
  var i: Int
  var r: Int
  assume n >= 0
  i := 1
  r := 0
  while (i <= n)</pre>
    invariant ??
  {
   r := r + i
    i := i + 1
  }
  assert r == n * (n+1) / 2
}
```

Exercise

DTU

```
method main() {
  var M: Int
  var N: Int
  var res: Int
  assume N > 0 && M >= 0
  var m: Int := M
  res := 0
  while (m \ge N)
    invariant ??
   m := m - N
    res := res + 1
  }
  assert M == res * N + m
}
```

```
method main() {
 var n: Int; var m: Int; var res: Int
  assume n >= 0 && m >= 0
 var x: Int := n
  var y: Int := m
  res := 0
  while (x > 0)
    invariant ??
  {
   if (x % 2 == 1) {
     res := res + y
   x := x / 2 / / right shift
    y := y * 2 // left shift
  }
  assert res == n * m
```

Christoph Matheja – 02245 – Program Verification

Loops – by example with proof arguments

```
Safety: loop execution does not fail
                                                          assume n >= 0
 - No assertion (failure) in the loop
                                                          var i: Int := 1
                                                          var r: Int := 0
                                                          while (i <= n)</pre>
Partial correctness: postcondition is satisfied if -
                                                             invariant ...
the loop terminates
                                                          {
 - Before every loop iteration: r == (i - 1) * i / 2
 - Upon termination we also know i == n + 1
                                                            r := r + i
                                                            i := i + 1
                                                          }
                                                          assert n >= 0
                                                          assert r == n * (n+1) / 2
```

Outline

- Weakest preconditions of loops
- Partial correctness reasoning
- Termination
- Encoding to PL0

Proving termination

A loop **variant** is an an expression V that decreases in every loop iteration (for some well-founded ordering <).

< has no infinite descending chains

Well-founded	Not-well-founded
< over Nat	< over Int
\subset over finite sets	< over positive reals

A loop terminates iff there exists a loop variant.

Example – loops with variants

- Termination is experimental in Viper
- We can model variants with ghost code
 - code that does not affect execution
 - can be safely removed again
 - example: variables that keep track of old values

assume n >= 0	
var i: Int := 1 var r: Int := 0	
<pre>while (i <= n)</pre>	
var z: Int := n - i + 1	
assert z >= 0	
r := r + i	
i := i + 1	
assert n - i + 1 >= 0	
assert n - i + 1 < z	
}	
assert n >= 0	
assert r == n * (n+1) / 2	

Loops – by example with proof arguments

Outline

- Weakest preconditions of loops
- Partial correctness reasoning
- Termination
- Encoding to PL0

Encoding of loops: naive attempt

 Check that loop invariant is preserved via a separate proof obligation

 Verify the surrounding code by replacing the loop with statements that check and use the loop invariant

Loop framing

- We often need to prove that a property is not affected by a loop
- Proving the preservation of a property across operations is called framing
- Our rule and our preliminary encoding require all framed properties to be conjoined to the loop invariant

Improved encoding for surrounding code

- It is sufficient to havoc those variables that get assigned to in the loop body
 - all other variables will not change
 - we do not forget their values

We call the assigned variables loop targets

assert I
<pre>// havoc all loop targets</pre>
assume I
assume !b

Improved encoding of invariant preservation

If we check the invariant in a separate proof, we also check it for states we can never reach given the remaining code

assume I assume b	<pre>x := 0 while (true)</pre>	invariant is checked
// encoding of S assert I	<pre>invariant true { assert x == 0 }</pre>	

Solution check loop preservation after prior code

// prior code		
<pre>// reset all loop targets</pre>		
assume I		
assume b		
// encoding of S		
assert I		

Final loop encoding

<pre>// prior code // havoc all loop targets assume I assume b</pre>	// prior code assert I // havoc all loop taraets
// encoding of S	assume I
assert 1	assume b
<pre>// prior code assert I // havoc all loop targets assume I assume !b // subsequent code</pre>	<pre>// encoding of S assert I assume false } [] { assume !b } // subsequent code</pre>

Exercise

 Explain why the right program verifies for the final loop encoding but not for the naive one.

 More exercises online and in code files (13-homework.vpr)

```
assume x > 17
var z: Int := 1
var y: Int := x
while (y > 0)
  invariant y >= 0
   y := y - z
assert y >= 0
```

Loops: wrap-up

