
1

BUILDING VERIFIERS
02245 – Lecture 3

Christoph Matheja – 02245 – Program Verification

2

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers

3

What next?

Christoph Matheja – 02245 – Program Verification

source code
annotated with
specifications

Automated verifier

Intermediate Verification
Language

Generation of
proof obligations

Intermediate Verification
Language

Front-end

SMT solver
feedback

Building a verifier

4

Outline
1. The Verification Toolchain

2. Efficient weakest preconditions

3. Error localization

Christoph Matheja – 02245 – Program Verification

7

§ “Verification as compilation”

§ Translate verification problems into
simpler ones until the answer is trivial

§ Wishlist for each translation A B
- Soundness: If B is valid, then A is valid

- Completeness: If A is valid, then B is valid

- Efficiency: B’s size is reasonable wrt. A

- Explainability: We can reconstruct errors in
A from errors in B

Christoph Matheja – 02245 – Program Verification

The toolchain so far

proof obligation F
in FOL

PL0 triple
{ P } S { Q }

SMTLIB-2 code

unsat sat

P ==> WP(S, Q)

(assert (not F))

call SMT solver

8

Splitting the PL0 Language

Programming Language XPL
§ Statements are eXecutable
§ Deterministic conditionals
§ Specifications via triples

Verification Language PL0
§ Statements model verification problems
§ Nondeterministic choice
§ Verification-specific statements

Christoph Matheja – 02245 – Program Verification

PL0 Statements
S ::= var x | x := a | S;S

| S [] S
| assert P | assume P

XPL Statements
S ::= var x | x := a | S;S

| if (b) { S } else { S }
| assert b

Verification condition
{ P } S { Q } valid

What is our verification condition for PL0
programs if we have only a statement S (no
pre- or postcondition)?

Define an encoding ENC that takes an XPL triple
{ P } S { Q }

and yields a PL0 statement such that your encoding is
1. sound,
2. complete,
3. efficient, and
4. explainable

with respect to the verification conditions of XPL and PL0.

Justify why (1) – (4) holds for your encoding.
Try to give formal statements. Proofs are not required.

Christoph Matheja – 02245 – Program Verification

Exercise: From XPL triples to PL0 statements

13

Running example: triple_min

Christoph Matheja – 02245 – Program Verification

method triple_min(x: Int, y: Int) returns (z: Int)
requires x >= 0 && y >= 0
ensures z <= 3 * x && z <= 3 * y && (z == 3 * x || z == 3 * y)
{

z := x - y
if (z < 0) {

z := z + y
z := z + 2 * x

} else {
z := z - x
z := z + 4 * y

}
}

The code examples contain every translation step applied to this program

14

§ “Verification as compilation”

§ Translate verification problems into
simpler ones until the answer is trivial

§ Wishlist for each translation A B
- Soundness: If B is valid, then A is valid

- Completeness: If A is valid, then B is valid

- Efficiency: B’s size is reasonable wrt. A

- Explainability: We can reconstruct errors in
A from errors in B

Christoph Matheja – 02245 – Program Verification

The toolchain so far

proof obligation F
in FOL

PL0 statement S0

SMTLIB-2 code

unsat sat

WP(S0, true)

(assert (not F))

call SMT solver

XPL triple
{ P } S { Q }

ENC({P} S {Q})

17

Outline
1. The Verification Toolchain

2. Efficient weakest preconditions

3. Error localization

Christoph Matheja – 02245 – Program Verification

18

Roadmap

Christoph Matheja – 02245 – Program Verification

source code
annotated with
specifications

Automated verifier

Intermediate Verification
Language

Generation of
proof obligations

Intermediate Verification
Language

Front-end

SMT solver
feedback

We are here

19

§ The time consumed by an automated verifier
is typically dominated by the SMT solver

§ Factors influencing SMT performance
- Size of verification conditions
- Theories in the background predicate
- Effectiveness of heuristics for undecidable theories,

particularly quantifier instantiation

§ Verification times are flaky
- Minor changes in VCs can have major impact
- Verification is often much faster than refutation

Christoph Matheja – 02245 – Program Verification

Verifier Performance

Compute WP(S, Q) for the programs below; do you notice a pattern?

Christoph Matheja – 02245 – Program Verification

Size of Verification Conditions

{ TODO }
res := (start + end)/2
{ res * res * res == x }

{ TODO }
{

x := (y+z)*(y+z)

} [] {

x := 12

}
{ 0 <= x }

22

Idea: add knowledge x == a once and for all instead of substituting every x by a

Christoph Matheja – 02245 – Program Verification

Eliminating duplication from assignments

WP(x := a, Q) ::= (x == a) ==> Q

{ (start + end)/2 * (start + end)/2 *
(start + end)/2 == x }

res := (start + end)/2
{ res * res * res == x }

{ res == (start + end)/2 ==>
res * res * res == x }

res := (start + end)/2
{ res * res * res == x }

Example with current WP Example with proposed WP

Is the proposed change of WP sound?

25

Similar idea: factor out postcondition using a fresh variable

Christoph Matheja – 02245 – Program Verification

Eliminating redundancy from choice-statements

WP(S1 [] S2, Q) ::= (B == Q) ==> WP(S1, B) && WP(S2, B)

where B is a fresh Boolean variable

{ (x == 5 ==> 0 <= x) Ù 0 <= x }
{
{ x == 5 ==> 0 <= x }
assume x == 5
{ 0 <= x }

} [] {
{ 0 <= x }
assert true
{ 0 <= x }

}
{ 0 <= x }

{ b == (0 <= x) ==> (x == 5 ==> b) Ù b }
{
{ x == 5 ==> b }
assume x == 5
{ b }

} [] {
{ b }
assert true
{ b }

}
{ 0 <= x }

26Christoph Matheja – 02245 – Program Verification

Soundness of alternative rule for choices

WP(S1 [] S2, Q) ::= (B == Q) ==> WP(S1, B) && WP(S2, B)

where B is a fresh Boolean variable

Is the proposed change of WP sound? { b == (0 <= x) ==> b Ù b }
{
{ b }
x := (y+z)*(y+z)
{ b }

} [] {
{ b }
x := -12
{ b }

}
{ 0 <= x } // unsound!

28

§ Choices: sound and efficient rule for programs without assignments

§ Assignments: sound and efficient rule

§ Observation: if x is not free in a or Q, then

è Can we translate PL0 into a reduced verification language without assignments?

Christoph Matheja – 02245 – Program Verification

Towards efficient verification conditions

WP(S1 [] S2, Q) ::= (B == Q) ==> WP(S1, B) && WP(S2, B) where B is fresh

WP(x := a, Q) ::= (y == a) ==> Q[x / y] where y is fresh

WP(x := a, Q) = WP(assume y == a, Q) ::= (y == a) ==> Q

29

§ PL0: WP(S, Q) is exponential in the size of S and Q
§ MVL: EWP(S, Q) is linear in the size of S and Q

è Is there a sound & complete encoding from PL0 to MVL?
Christoph Matheja – 02245 – Program Verification

The minimal verification language MVL

S EWP(S, Q)

assert R R && Q

assume R R ==> Q

S1; S2 EWP(S1, EWP(S2, Q))

S1 [] S2 (B == Q) ==> EWP(S1, B) && EWP(S2, B)
where B is fresh

MVL Statements
S ::= assert R

| assume R
| S;S
| S [] S

efficient weakest preconditions

sound without assignments

30

§ Main idea:
1. Eliminate variable declarations (exercise, later)
2. Make all assignments assign to fresh variables è single static assignment form (SSA)
3. Replace every assignment x := a by assume x == a è passification

§ Observation: all paths through a PL0 program are finite (no loops / recursion)
§ A program is in dynamic single assignment form (DSA)

iff every assignment on a path assigns to a fresh variable

Christoph Matheja – 02245 – Program Verification

From PL0 to MVL

x1 := 0
{
x2 := (y1+z1)*(y1+z1)

} [] {
x2 := -12

}

x := 0
{
x := (y+z)*(y+z)

} [] {
x := -12

}

x := 0
x := 1
y := x

x1 := 0
x2 := 1
y1 := x2

31

§ Main idea
- Introduce multiple versions of each variable
- Always use the latest version

§ Assignment
- Assign to a new version

§ Choice-statements
- convert both branches individually
- synchronize the last version of

each variable

Christoph Matheja – 02245 – Program Verification

DSA Construction

x := 0
x := 1
y := x

x1 := 0
x2 := 1
y1 := x2

x1 := 0
{
x2 := (y1+z1)*(y1+z1)
x3 := 7

} [] {
x2 := -12
x3 := x2

}
y := x3

x := 0
{
x := (y+z)*(y+z)
x := 7

} [] {
x := -12

}
y := x

Hint: try to encode var x as a PL0 program first

Christoph Matheja – 02245 – Program Verification

How do we encode variable declarations in MVL?
S WP(S, Q)

var x forall x :: Q

x := a Q[x / a]

assert R R && Q

assume R R ==> Q

S1; S2 WP(S1, WP(S2, Q))

S1 [] S2 WP(S1, Q) && WP(S2, Q)

34

Encode
§ Pre- and postconditions
§ If-statements

§ Variable declarations
§ DSA transformation
§ Passification

Efficient WP

All encodings are sound and complete
(not necessarily true for solvers)

Size of VCs: linear in the original triple

Christoph Matheja – 02245 – Program Verification

The toolchain so far

FOL proof obligation

PL0 statement

SMTLIB-2 code

unsat sat

XPL triple

MVL statement

35

1. The Verification Toolchain

2. Efficient weakest preconditions

3. Error localization

Christoph Matheja – 02245 – Program Verification

Outline

36

Roadmap

Christoph Matheja – 02245 – Program Verification

source code
annotated with
specifications

Automated verifier

Intermediate Verification
Language

Generation of
proof obligations

Intermediate Verification
Language

Front-end

SMT solver
feedback

We are here

37

Verification Debugging with Counterexamples

Christoph Matheja – 02245 – Program Verification

Verification condition : !(E)WP(S, true) satisfiable?

§ unsat:

§ sat: + model with initial values invalidating VC è counterexample

§ unknown: + we can often still get a partial model

§ Viper command line option

--counterexample variables

assert x*x > 0

38

§ Errors in the implementation

§ Errors in the specification
- Pre- and postconditions
- Assumptions and assertions

§ Incompleteness of the verifier

§ Unsoundness of the SMT solver
- Possible but unlikely for unverified solvers

è Verifiers should help users to localize and fix verification failures

Christoph Matheja – 02245 – Program Verification

Causes for verification failures
{ 0 £ b*b – 4*c }
discriminant := b*b – 4*a*c;
x := (-b + discriminant) / 2
{ a*x2 + b*x + c = 0 }

// Fermat’s last theorem
assert 0<x && 0<y && 0<z ==>

x*x*x + y*y*y != z*z*z

39

How does verification fail?

Christoph Matheja – 02245 – Program Verification

Verification condition: (E)WP(S, true) valid

If S contains no assertions, then (E)WP(S, true) is valid.

How many assertions could fail? Which ones should we report?

Christoph Matheja – 02245 – Program Verification

{ (x < 17 ==> x < 26)
&& (x >= 17 ==> x > 42 && x > 17 && x != 16) }

{
{ x < 17 ==> x < 26 }
assume x < 17;
{ x < 26 }
assert x < 26
{ true }

} [] {
{ x >= 17 ==> x > 42 && x > 17 && x != 16 }
assume x >= 17;
{ x > 42 && x > 17 && x != 16 }
assert x > 42;
{ x > 17 && x != 16 }
assert x > 17;
{ x != 16 }
assert x != 16
{ true }

} { true }

42

§ Goal: report assertions that fail verification

§ How to identify failing assertions?

§ How many failing assertions should we report?

§ How do we deal with dependencies between failures?

èA single VC EWP(S, true) cannot report which parts of a proof fail

Christoph Matheja – 02245 – Program Verification

Error localization
If S contains no assertions, then (E)WP(S, true) is valid.

43

§ New verification condition:
Every P in MWP(S, {}) is valid

§ All predicates are implication chains
P ==> Q ==> R

invalid è assert R failed

Christoph Matheja – 02245 – Program Verification

Idea: Split VC at assertions into multiple proof obligations

S MWP(S, M)
assert R M ∪ { R }
assume P { P ==> Q | Q ∈ M }
S1; S2 MWP(S1, MWP(S2, M))
S1 [] S2 MWP(S1, M) ∪ MWP(S2, M)

sets of predicates

set of FOL
proof obligations

SMTLIB-2 code

unsat sat

§ Compute MWP(S, {}) for the statement
on the right.

§ Which of the proof obligations are valid?

§ For each invalid proof obligation,
determine an initial state such that the
corresponding assertion fails

§ Verify the example on the right in Viper
using the Carbon verifier. How many error
messages do you get?

Christoph Matheja – 02245 – Program Verification

Exercise: error localization

{
assert x == 7

} [] {
assert x == 2
assert x > 0

}

method foo(x: Int, b: Bool) {
if(b) {
assert x == 7

} else {
assert x == 2
assert x > 0

}
}

46

§ WP and MWP ignore the order of assertions

§ Issue: second assertion should only be checked if it passed the first assertion

§ Solution: add an assumption after each assertion

Christoph Matheja – 02245 – Program Verification

Avoiding masked verification errors

assert x == 2
assert x > 0

assert x > 0
assert x == 2

assert R
assume R

assert R

WP(assert P; assert R, Q) = P && R && Q

MWP(assert P; assert R, M) = M ∪ P ∪ { R }

47

Avoiding masked verification errors

Christoph Matheja – 02245 – Program Verification

{ x == 2 ==> x > 0, x == 2 }
assert x == 2
{ x == 2 ==> x > 0 }
assume x == 2
{ x > 0 }
assert x > 0
{ }
assume x > 0
{ }

{ x > 0 ==> x == 2, x > 0 }
assert x > 0
{ x > 0 ==> x == 2 }
assume x > 0
{ x == 2 }
assert x == 2
{ }
assume x == 2
{ }

Case 1: one assertion fails Case 2: both assertions fails

48

Encode
§ Pre- and postconditions
§ If-statements

§ Variable declarations
§ DSA transformation
§ Passification
§ Avoid masked errors

Efficient MWP

All encodings are sound and complete

Christoph Matheja – 02245 – Program Verification

The toolchain so far

set of FOL
proof obligations

PL0 statement

SMTLIB-2 code

unsat sat

XPL triple

MVL statement

49

Keep back-translation map from encoding to
original è report errors for original problem

§ Assertions è postconditions, assertions
§ Assume/Choice statements è if-statements

§ Versioned variables (DSA) è original variables
§ Assumptions è assignments, masked errors

§ Proof obligations è assertions

§ Solver results è proof obligations

Christoph Matheja – 02245 – Program Verification

The Error Propagation Toolchain

set of FOL
proof obligations

PL0 statement

SMTLIB-2 code

unsat sat

XPL triple

MVL statement

50

Wrap-up

Christoph Matheja – 02245 – Program Verification

52

Error reporting in Viper

Christoph Matheja – 02245 – Program Verification

§ Carbon
- Uses weakest preconditions, similarly to

the technique taught in this course, but
uses a more efficient approach

- Reports multiple verification failures

§ Silicon
- Uses symbolic execution (similar to SP)

the technique taught in this course, but
uses a more efficient approach

- Reports one verification error per method

- Default verifier in the IDE

§ Viper has two verification backends
- Counterexamples can be enabled via command line option

53

§ Issue with error localization via MWP
- duplicates theory reasoning
- cannot use all of EWP
- need extra mapping for back-translation

§ Alternative: error localization at SMT level
- Idea: add a fresh Boolean variable L (label) that is

false iff the assertion at position L fails
- lookup in model which labels are false

§ Problem: solver can always set labels to false
- L=false should only hold if A holds
- Requires dedicated solver support (e.g. Z3 :named)

Christoph Matheja – 02245 – Program Verification

Bonus: more efficient error localization

!WP(assert A, Q) sat
iff

!(A && Q) sat
iff

!A || !Q sat
iff (L is fresh)

(!A && !L) || !Q sat
iff

!WP(assert A || L, Q) sat

adding labels is sound

54

Bonus: more efficient error localization

Christoph Matheja – 02245 – Program Verification

(set-option :produce-assignments true) ; enables use of named labels

; …

(assert (not
(! ; *not* a negation è term with :attributes

(= z2 (* 3 x0)) ; original assertion
:named L6 ; add label L6

)
))

; …

55Christoph Matheja – 02245 – Program Verification

What next?

set of FOL
proof obligations

PL0 statement

SMTLIB-2 code

unsat sat

XPL triple

MVL statement

§ More interesting programming and
specification constructs

§ “Verification as compilation”

§ Wishlist for each translation A B
- Sound encodings

- Complete encodings

- Linear-size verification conditions

- Localize and back-translate errors

PL1 statement

PL2 statement

56

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Concurrency Front-end
verifiers

