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Tentative course outline

Building a Loops and
f SV SelvErs first verifier procedures
We are here
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models
Frontends,
Extensions
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Satisfiability Modulo Theories Solvers

= A foundational topic in
theoretical and applied
computer science

Decision
Procedures

Mathematical

Symbolic
Computation

Computablllty Computer - Our fOCUS
and Algebra . .
Complexity effectively applying
SMT technology to

program verification

Verification

Software
Engineering

Circuit
Design

Performance
Computing
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But first: Recap

The Floyd-Hoare triple { P } S { 0 } isvalid if and only if
every execution of S that starts in a state satisfying precondition P
terminates without an error in a state satisfying postcondition Q.

S G
/) requires x > 0
ensures r >y
// S
var y: Int = 7

r:i=x+y

O
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Recap: Weakest Pre & Strongest Post

P ==> WP(S, 0)

SP(P, S) ==> 0

WP(S, Q) SP(P, S)
(total correctness)

var X forall x :: Q

X

= a Q[x / a]

assert R R & Q
assume R R ==>0Q
S1; S2 WP(S1, WP(S2, Q))

S1 [] S2

(partial correctness: accepts errors/divergence)

exists x :: Q

exists x0 :: P[x / x0] & & X
P & R

P & R

SP(SP(P, S1), S2)

WP(S1, Q) && WP(S2, Q) SP(P, S1) || sp(P, S2)

a[x / x0]
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Automating Program Verification

Mains steps of a tool for checkingthat { P } S { Q0 } isvalid:
1. Compute WP(S, Q) =>» last lecture

2. Check whether P ==> WP(S, Q) is valid =>» delegate to SMT solver
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Alternative approach

Mains steps of a tool for checking that

1. Compute and

2. Check whether IS valid

and Is valid

Is valid:
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< Homework W1 >

Solutions will be published on course page
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Tentative course outline

Fgundatlpnal Building a Loops and
.. first verifier procedures
Principles
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models

!

Frontends,
Extensions
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Roadmap

Automated verifier

Front-end

4

source code

annotated with Intermediate Verification
e o Language
specifications ‘

Intermediate Verification
Language

3

Generation of
proof obligations

4

SMT solver

feedback

We are here
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Overview

1.

2.

3.

4.

Propositional logic and SAT solvers
Using Z3 as a SAT solver
First-order logic and SMT solvers

Using Z3 as an SMT solver
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Propositional Logic

Syntax
F ::= true |

Interpretation 3J: Var -

X: Boolean variable in Var
X| -F | FAF

{ true, false }

Satisfaction relation J = [X = false, Y = true]
3 E true iff — always
J EX iff  J(X) = true IFEXVY
3 E -F iff not 3 = F
SEFAG iff JIEFand JFG IJEX =Y

Jisamodelof F iff 3 EF

FJE(EXVY) e X=Y)
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Satisfiability & Validity

= F s satisflable iff F has some model (X=>Y)>Y
Models: [X = true,Y = true|, [X = false,Y = true], |X = true, Y = false]
= F is unsatisfiable iff F has no model XA=YAX>Y)

= Fisvalid iff every interpretation is a model of F XAX=>Y)>Y
(—F is unsatisfiable)

= Fis not valid Iff some interpretation is not a modelof F [ XA(X=>Y) &Y
(—F is satisfiable)

Model of —F: [X = false, Y = true]
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The Satisfiability Problem

= A formula is satisfiable if it has a model

Satisfiability Problem (SAT):
Given a propositional logic formula,
decide whether it is satisfiable.

If yes, provide a model as a withess

(XVYVZ)
AUV aY)
AN(=XV-=ZVvUVYV)
S a= |

U = false

V = false

X = true

Y = false

Z = false
]
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Complexity of SAT

form (CNF), SAT is the classical
NP-complete problem

For formulas in conjunctive normal /\ \/ C;; where C;; € {X;;,~X;,}
(|

1200 T T T T T L

Many difficult problems can be N

Zchaff (2002) I
[ [} Berkr‘nin (2002) -
efficiently encoded ol 3 Ek o .
Zchaff (2004) # o
SatELite (2005)

[
(=3
o

4 Picosat (2007)

v Rsat (2007)
v Minisat 2.1 (2008)

Clasp (2009)
* Cryptominisat (2010)
© Lingeling (2010) ﬁ]}
® Minisat 2.2 (2010)
©  Glucose 2(2011)
® Glueminisat (2011)
© Contrasa t (2011)

Every known algorithm is
exponential in the formula’s size

CPU Time (in seconds)
[}
S

N
o
o

200

ST

- 1 1
0 20 40 60 80 100
Number of problems solved

1
120
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Example: Boolean Pythagorean Triples

= BPT: a triple of natural numbers 1 <a <b < ¢ with a® + b* = ¢?

* Question: Can we color all natural numbers with just two colors such that
no BPT is monochromatic?
= Answer: No! The set {1, ..., 7825} always contains a monochromatic BPT
= This was first proven using a SAT solver I
. . 7000 R L :;ﬂ'
- number of combinations: 27825 S
- “the largest math proof ever” (ca. 200 TB)
4000 "E
= Modern SAT solvers are efficient in practice 5
credits: Marijn J.H. Heule, “Everything’s Big;;er in‘ Texas - Tr;e Largest Math I;’roof ;Ever”, GCAI 2017
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Exercise: Seating of Wedding Guests

Christoph Matheja — 02245 — Program Verification
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Exercise

= Model the following problem as an instance of the SAT problem.
= There are three chairs in a row: eft, iddle, right.

= Can we assign chairs to lice, ~ob, and * harlie such that:
- Alice does not sit next to Charlie,
- Alice does not sit on the leftmost chair, and
- Bob does not sit to the right of Charlie?

=
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Solution

Tp.c: Person p sits in chair ¢’

* Model assignment via nine variables

_ _ _ (agVTar="2cm)N(@am= "Tci N\2C,r)
= Alice does not sit next to Charlie

= Alice does not sit on the leftmost chair

= Bob does not sit to the right of Charlie

AV e
= Each person gets a chair 1<p<3 1<c<3
: /\ /\ (—Tp,c V 7Tp d)
= Every person gets at most one chair 1<p<3 1<c,d<3,c#d

/\ /\ (mTp,c V TTg,c)

= Every chair gets at most one person 1<p.q<3.ptq 1<c<3

=
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Overview

1.

2.

3.

4.

Propositional logic and SAT solvers
Using Z3 as a SAT solver
First-order logic and SMT solvers

Using Z3 as an SMT solver
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The Z3 Satisfiability Modulo Theories solver

= Developed by Microsoft (under MIT license)
» Building block of many verification tools including Viper

= Various input formats and APIs
- Z3, SMTLIB-2, C, C++, Python, Java, Rust, OCamli, ...

= For now: Use Z3 as a SAT solver

(=]
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A first example (SMTLIB-2)

; declare variables

(declare-const X Bool)
(declare-const Y Bool)
(declare-const Z Bool)

; define formula (X=>Y=>2Z)AX
(assert (=> XY Z))

(assert X)

(check-sat)

(get-model) ; fails if unsat

$ z3 O0l1l-example.smt2

sat
(model
(define-fun Z () Bool
false)
(define-fun X () Bool
true)
(define-fun Y () Bool
false)
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A first example (Z3Py)

from z3 import *

F is satisfiable, this is a model

# declare variables

X = Bool('X") $ python .\@2-example.py

Y = Bool('Y")

Z = Bool('Z") [Z = False, X = True, Y = False]
# define formula F [Z = False, X = False, Y = True]
F = And( Implies(X, Implies(Y, Z)), X) \

solve(F) # find a model for F

—F is satisfiable, this is a model

# find a counterexample for F

solve(Not(F))
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Example: Course Selection

You have to take CS Modeling, Physics, or Chemistry
For CS Modeling, you also need Discrete Math

For Verification, you need CS Modeling

For Physics and Chemistry, you need Statistics
Statistics and Discrete Math are at the same time

CS Modeling and Physics are at the same time
Verification and Chemistry are at the same time

Is it possible to take Verification and all preliminaries?

Is it possible to take Physics and Discrete Math?
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Solution: Course Selection

(declare-const Verification Bool)

J

(assert
(and
(or ComputerScienceModelling Physics Chemistry)
(=> ComputerScienceModelling DiscreteMath)
(=> Verification ComputerScienceModelling )
(=> (or Physics Chemistry) Statistics)
(xor Statistics DiscreteMath)
(xor ComputerScienceModelling Physics)
(xor Verification Chemistry)

(assert Verification)
(check-sat)
(get-model)

=
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Exercise: Seating of Wedding Guests

= Use Z3 to check whether we can assign suitable seats to all wedding guests
= There are three chairs in a row: eft, iddle, right.

= We want to assign chairs to lice, ~ob, and ‘ harlie such that:
- Alice does not sit next to Charlie,
- Alice does not sit on the leftmost chair, and
- Bob does not sit to the right of Charlie.
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Solutions in example files

04-wedding.smt2 / .py

=
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Proofs with Z3

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x & y) == (!x || ly)")
(assert
(=
(not (and x y) )
(or (not x) (not y))
)
)

(check-sat) ; result: sat

What does this tell us about De Morgan’s law?
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Proofs with Z3

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x & y) == (!x || ly)")
(assert
(=
(not (and x y) )
(or (not x) (not y))
)
)

(check-sat) ; result: sat

What does this tell us about De Morgan’s law?

there is an example for
which the law is true
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Proofs with Z3

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x & y) == (!x || ly)")
(assert

(=
(not (and x y) )
(or (not x) (not y))

)

(check-sat) ; result:

What does this tell us about De Morgan’s law?
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Proofs with Z3

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x & y) == (!x || ly)")
(assert
(= There is no counterexample
(not (and x y) )
: (or (not x) (not y)) = the formula is valid
) =>» De Morgan’s law holds

(check-sat) ; result:

What does this tell us about De Morgan’s law?
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Using Z3 for Homework

= Here is an excerpt from a proof in the first homework assignment:

valid: P ==> WP(assert R, Q)
iff

valid: P ==> (R && Q)

iff

valid: P ==> R

and valid: (P & R) ==> Q

iff
valid: SAFE(p, assert R)
and valid: SP(P, assert R) ==> Q

= Use Z3 to prove the blue equivalence.

=
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Solution

see code examples
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Using a SAT solver

o witness: model of F
= |s F satisfiable?

sat + withess
F satisfiable

F— SAT solver
unsat

F unsatisfiable

" Is Fvalid? counterexample: model of — F

sat + counterexample
—F satisfiable

—F —  SAT solver
unsat

—F unsatisfiable

F valid

(=]
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Using a SAT Solver for Program Verification

Mains steps of a tool for checking that Is valid:

1. Compute

2. Check whether entailment Is valid

» Check satisfiability of negation:

= sat -)Q model explains why is not valid

=» last lecture

=» ask SAT solver

(=]
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Using a SAT Solver for Program Verification

{

true }

// check that validity of true = a A ...

{aAn (A (true < (a = b)) v b A (false < (a = b))) v —a A (true < (a = b)

if (a) {

b A (true & (a = b)) v -b A (false < (a = b)) }

{
{

{

e st

el e e

if (b) {

true < (a = b) }
res := true

res < (a = b) }

} else {

false < (a = b) }
res := false

res < (a = b) }

}

res < (a = b) }

else {

true < (a = b) }

res := true

res < (a = b) }

res < (a = b) }

O
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Propositional logic is not enough

Entailment to check:

// ... swap X and Y (x == X && y ==Y) ==>y ==Y & y - Y

= Entailment is not in propositional logic
- Integer-valued variables (x, X, y,Y) and numeric constants (0)
- Arithmetic operations (-) and comparisons (==)

» Logic must support at least the expressions appearing in programs
- ltis also useful to support quantifiers (e.g., for array algorithms)

» General framework: first-order predicate logic (FOL)
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Overview

1.

2.

3.

4.

Propositional logic and SAT solvers
Using Z3 as a SAT solver
First-order logic and SMT solvers

Using Z3 as an SMT solver
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Ingredients of Many-sorted First-order logic (FOL)

1. Sorts Bool, Int, Real, T

= specifies possible types

2. Typed Variables X, Y5 Z,
3. Typed Function symbols 9, 1.5 +, *, _P_i_
= building blocks of terms Z x 2y - 17 :
4. Typed Relational symbols < prime R
= turn terms into logical propositions X < @ prime(y+4)
5. Logical symbols AV - =& 3 V..
6. An equality symbol -

z*¥z7z + 1

R(X,Y,2)

(=]
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FOL Formulas
0,1 : Int (type: constant) <:IntxInt (type: binary relation)

= Asignature X is a set of -
- at least one sort X={Int0,1,+* <}
- function symbols

- relational symbols (= does not count)
+: IntXInt — Int
(type: function with 2 arguments)

= A X-formula is a logical formula over propositions
built from symbols in Z

v:Intdy: Int (y=x+1Ay*xy<x*x+(1+1)*x+ 1)

Is this X-formula satisfiable?

(=]
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FOL Formulas

Is this X-formula satisfiable? 2 ={Int0,1,+,x* <}

v:Int3y: Int (y=x+ 1 Ay*y<x*xx+(1+1)*x+1)

Yes, if the symbols +, *, = have the No, if
canonical meaning - 1 actually means 2, or
- + actually means maximum

Satisfiability of Z-formulas depends on the admissible interpretations of symbols in 2

determined by 2-theories

(=]
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FOL Z-Interpretations X = {Int, one, plus, leq }

A X-structure U assigns

A 1= (IntQI, OTLQQI, plLLSQI, leqﬂ)

- anon-empty domain (set) U% to each sort U in X Int* ::=7Z
- afunction £ over domains (respecting types) to one =1
each function symbol f in X plus®™: Int*xInt” - Int*, (a,b) » a+ b

- arelation R* over domains (respecting types) to
each relational symbol R in ¥

leq™ ::={(a,b) € Int"xInt”|a < b}

A X-assignment 8 maps variables x of sort B:Var — Int”
U to domain elements in U*

A Z-interpretation is a pair 3 = (U, 5)

J(t) denotes the domain
by evaluating term t in 3

(plus (plus(one, one), x))
plus®(plus®(one”, one™), B(x))

(1+1) + (%)

element obtained

i1 e

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 42



FOL Semantics

Jisamodelof F iff 3 EF

FOL formula F (excerpt) 3 =Y, pB) = Fif and only if

/ t1 =1 3(t1) = 3(¢t2)
we can always R(ty, ..., tn) (S(tD), -, 3(tn)) € R

express equality

between terms GAH SEGand 3 =EH
G=>H If 3 E G, then S = H
3x: T (G) Forsomev e T J[x =v]EG
vx: T (G) Forallve T S[x =Vv]EG

F is satisfiable iff F has some model
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Issues with FOL Satisfiability

= All symbols are uninterpreted

* The meaning of functions and relations
IS determined in the chosen model

= Many formulas are satisfiable if we can
choose X-structures that defy the
intended meaning of functions and
relations

=» Filter out unwanted X-structures

X = { Nat, zero, one, plus, leq }

F ::= 3x: Nat( x plus one leq zero)

infix notation for leq(plus(x, one), zero)

sat: Nat =N, one” ::= 0, leq =<
zero® =1, plus =+
sat: Nat = N one¥ =1, leq =<

zero® 1= 0, plus

(=]
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Satisfiability Modulo Theories

= A Y-sentence is a formula without free variables

» An axiomatic system AX is a set of Z-sentences

» The X-theory Th given by AX is the set of all Z-sentences implied by AX

A X-formula F is satisfiable modulo Th iff
there exists a X-interpretation 3 such that
= S F,and

» 3 =G for every sentence Gin Th.

A X-formula F is valid
modulo Th iff —=F is not
satisfiable modulo Th.
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Exercise

= Consider the signature X = { af, }

= the theory Th given by the axioms

VX: (X 20 X) VX: VX: (x %

= and the formula F ::= Jx: (x ).

a) Give a model witnessing that F is satisfiable modulo Th.

b) Propose an axiom such that F is also valid modulo Th.

=
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Solution F o= 3o ot (x )
VX: (X 0 X) Vx VX: (x \% y X)
a) b)
Th-valid after adding axiom
VX: (X X)
DTU
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Some important theories

» Arithmetic (with canonical axioms)

- Presburger arithmetic: 2 ={Int, <, }
- Peano arithmetic: 2 ={Int, <, }
- Real arithmetic: Y = {Real, <, }

= EUF: Equality logic with Uninterpreted Functions

1={U-=

arbitrary non-empty domain U

axioms ensure that = is an equivalence relation

arbitrary number of of any arity
axioms do not constrain function symbols

= We typically need a combination of multiple theories

Program verification: theories for modeling different data types

decidable
undecidable
decidable

decidable
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Overview

1.

2.

3.

4.

Propositional logic and SAT solvers
Using Z3 as a SAT solver
First-order logic and SMT solvers

Using Z3 as an SMT solver
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Using Theories (SMTLIB-2)

Sorts

- Bool, Int, Real,
BitVec(precision)

- DeclareSort(name)
(uninterpreted)

Uninterpreted functions are
declared with parameter and
return types

Variables are uninterpreted
functions of arity O
- Const(name, sort)

(declare-sort Pair)

(declare-fun (Int Int) Pair)
(declare-fun (Pair) Int)
(declare-const Pair)

; first axiom

(assert (= ( )))

; second axiom
(assert (forall ((x Int) (y Int))

(= x ( ( X y)))
))

; formula (negated for validity checR)
(assert (not (= ( ) 9)))

(check-sat)
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Using Theories (Z3Py)

Sorts

- Bool, Int, Real,
BitVec(precision)

- DeclareSort(name)
(uninterpreted)

from z3 import *
Pair = DeclareSort('Pair')

null = Const('null', Pair)

cons = Function('cons', IntSort(), IntSort(), Pair)

first = Function('first', Pair, IntSort())
axl = (null == cons(9, 0))

» Uninterpreted functions are X, y = Ints('x y*)

= Variables are uninterpreted

declared with parameter and

return types

functions of arity O
- Const(name, sort)

ax2 = ForAll([x, y], first(cons(x, y)) == X)

= Solver()
.add(axl)
.add(ax2)

S
S
S
F = first(null) ==
#
S.

check validity
add(Not(F))
print( s.check() )

(=]
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Custom theories for user-defined data types and operations

Encoding via

- uninterpreted sorts

- constants

- uninterpreted functions

- axioms enforcing the data type’s properties

We call such an encoding an
axiomatization

Week 5: advanced data types

- sets, sequences, trees
- accessors, mutators
- recursive functions

(declare-sort Pair)

(declare-fun (Int Int) Pair)
(declare-fun (Pair) Int)
(declare-const Pair)

; first axiom

(assert (= ( )))

,; second axiom
(assert (forall ((x Int) (y Int))

(= x ( ( X y)))
))

; formula (negated for validity check)
(assert (not (= ( ) 9)))

(check-sat)

(=]
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ncorporating custom theories

Original verification condition: P ==> WP(S, Q) valid

. . A Z-formula F is satisfiable modulo Th iff
A 2-formula F is valid . . L
. . there exists a X-interpretation 3 such that
modulo Th iff 'F is not ~
. . = §EF, and
satisfiable modulo Th.

= 3 =G for every sentence Gin Th.

Enriched verification condition: _

P ==> WP(S, Q) valid modulo custom theory Background Predicate:
iff conjunction of all our axioms
iff BP ==> P ==> WP(S, Q) valid defining our theory

(=]
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Automating Program Verification

Mains steps of a tool for checkingthat { P } S { Q0 } isvalid:

0. Determine axioms of underlying theory =» background predicate BP
» Reusable: once for every type or function = Week 5
» /3 has built-in theories for common theories (e.g. arithmetic) = Today

1. Compute WP(S, Q) = Week 1 & 2

2. Check whether BP ==>P ==> WP(S, Q) isvalid = SMT solver

» Check satisfiability of negation: BP && P && IWP(S, Q)

= unsat -)O

" sat -)Q model explainswhy { P } S { QO } isnotvalid

(=]
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Axiomatize with Care

= Axiomatizations are part of the trusted codebase

Inconsistent axioms invalidate verification results

(declare-const null Int)

; 1lnhconsistent axioms

false ==> P ==> WP(S, Q) is always valid (assert (= null )

(assert (= null 17)

(assert (not

= Axioms do not show up in verification problems (> 42 23) ; wrong statement

{ X ==null } S{ vy > null }

))

(check-sat) ; unsat <::>

» Axiomatizations require separate validation

- proofs, testing, profiling, ...
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Exercise: Color Axioms

= Axiomatize a custom type for colors

- Color = Black | White | Red |
Green | Blue | Yellow

= Your type should support two operations:

1. A function isInDanishFlag to determine
whether a color appears in the Danish flag

2. A function mix that takes two colors and
returns the color obtained from adding them
(see right); it does not matter what the function
returns when the resulting color is not
supported

Verify the program on the right with Z3

{ X == Red }
var g: Color := Green

var b: Color := Blue
:= mix(b, mix(x, g))
{ isInDanishFlag(r) }
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Solution

// BP ==

{ x == Red } // ==>

{ isInDanishFlag(mix(Blue, mix(x, Green)) }
var g: Color := Green

{ isInDanishFlag(mix(Blue, mix(x, g)) }

var b: Color := Blue

{ isInDanishFlag(mix(b, mix(x, g)) }

r := mix(b, mix(x, g))
{ isInDanishFlag(r) }

Full solution: 02-smt/09b-colors-verification.smt

; declarations
(declare-sort Color)

; background predicate
(assert (forall ...))

; precondition
(assert (= x Red))

; IWP(S, Q)
(assert (not
(isInDanishFlag ...

))

(check-sat)
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Z 3 built-in theories

=>» no explicit background predicate needed
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Z 3 built-in theories

\
|

z
|

QF_UF

;

‘é

@,@

(Quantifier-free) Linear Integer/Real Arithmetic

19% 2+ 2%y = 42
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Z 3 built-in theories

Non-Linear Integer/Real Arithmetic

rxy+2xxxy+1l=(x+y) *x(x+vy)
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Z 3 built-in theories

Quantifier-free fixed-size bitvector arithmetic

r&y < x|y
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Exercise: use Z3 to find all suitable restaurant orders

MY HOBBY:
EMBEDDING NP-OMPLETE PROBLEMS IN RESTAURANT ORDERS

« APPENZERS — \ L EXACTLY? UHA...

MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

FRENCH FRIES 2.75 \ LISTEN, I HAVE SIx OTHER
TABLES TO GET T0 —

SIDE SALAD 235 |
~ A FAST AS POSSIBLE, (F (OURSE. WANT /

HOT WINGS 2.55 GOMETHING ON TRAVELING SALESYAN?

MOZZAREUA STICXKS  4.20

SA PLAlE 580 \
MPLER ﬁf% %

—— SANDWICHES ~—

https://xkcd.com/287/
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Solution

see code examples
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Using Z3 to verify a program

{a=1A80<>b*b - 4*%c }
discriminant := b*b - 4*a*c;
if (discriminant < @) {
assert false
} else {
x := (b + +discriminant) / 2

}

{ a*x> + b*x + c = 0 }

Step 1: use WP to determine the verification condition

(=]
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Using Z3 to verify a program

{

a=1AaA0<b*b - 4*%c }

/] ==>

{

b*b - 4*a*c < @ A false v

—(b*b - 4*a*c < @) A a*((-b + vbxb - 4xaxc) / 2)2 + b*((-b + Vbxb - 4xaxc) / 2) + c

discriminant := b*b - 4*a*c;

{

discriminant < @ A false v
—discriminant < @ A a*((-b + Vdiscriminant) / 2)2 + b*((-b + +Vdiscriminant) / 2) +

if (discriminant < @) {

{

{
}

~

N~ S

false }

assert false

a*x? + b*x + ¢ = 0 }

else {

a*((-b + +vdiscriminant) / 2)2 + b*((-b + Vdiscriminant) / 2) + ¢ = 0 }
X := (-b + +discriminant) / 2

a*x? + b*x + ¢ = 0 }

a*x? + b*x + ¢ = 0 }

=9 }

0 }
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Using Z3 to verify a program

= Step 1: use WP to determine the verification condition

{a=1A0<b*b - 4*%c }
// SI=PD
{ b*b - 4*a*c < @ A false v
—(b*b - 4*a*c < @) A a*((-b + vbxb - 4xaxc) / 2)2 + b*((-b + Vbxb - 4xaxc) / 2) + c

= Step 2: check whether the verification condition is valid
- Check satisfiability of negation:

; declarations .. (full example available online)

; precondition
(assert (and (= a1l) («<=0 (- (* bb) (*4<c)))))

; negated weakest precondition
(assert (not <complicated expression here>))

(check-sat) ; want: unsat

0 }

=
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Z3’s Theory Reasoning

» /3 selects theories based on the features appearing in formulas
- Most verification problems require a combination of many theories

Quantifier-free linear integer arithmetic with uninterpreted functions

17xx+23* f(y) >x+y+42

= Some theories are decidable, e.g., quantifier-free linear arithmetic
- SMT solver will terminate and report either “sat” or “unsat”

= Some theories are undecidable, e.g., nonlinear integer arithmetic
- Especially in combination with quantifiers
- SMT solver uses heuristics and may not terminate or return “unknown”
- Results can be flaky, e.g., depend on order of declarations or random seeds

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

67



Working with quantifiers is non-trivial

(assert (assert
(exists ((x Int)) (forall ((x Real))
(forall ((y Real)) (exists ((y Real))
) (= (Cyx) > ((™yy) 1)) ) (=x (*yy))
) )
) )
(check-sat) (check-sat)
$ z3 $ z3
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Exercise (not covered in class)

The N-queens problem is to place N-queens on an N x N
chess board such that no two queens threaten each other.

Use Z3 to compute a solution to the N-queens problem for
any given N.

Hints:

- We recommend using Z3Py or another Z3 API such that you can
write programs around your Z3 queries.

- Represent the board using multiple integer variables, e.g. X2 =5
means the queen is in row 5 in column 2.

- distinct(1) is a shortcut for stating all elements of list | are
pairwise disjoint.

- You can easily check the diagonals by shifting the queens vertically
and then checking the rows.

8
7
6
5
4
3
2
1

- N W e o Y N @

[2.’ 4.’ 6) 8) 3) 1.’ 7) 5]
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Solution

see code examples
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Wrap-up

Mains steps of a tool for checkingthat { P } S { Q0 } isvalid:

0. Determine axioms of underlying theory =» background predicate BP
» Reusable: once for every type or function = Week 5
» Z3 has built-in theories for common theories (e.g. arithmetic)

1. Compute WP(S, 0) = Week 1 & 2

2. Check whether BP ==> P ==> WP(S, Q) isvalid = SMT solver
» Check satisfiability of negation: BP && P && IWP(S, Q)

= unsat -> O

" sat > 4 0 model explainswhy { P } S { Q0 } isnotvalid
= unknown => decidability issues, strengthen theory, hacks =» future classes
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What next?

Automated verifier

Front-end

.

source code _ —
annotated with Intermediate Verification
Language

specifications l

Intermediate Verification
Language

O

ol

feedback

N

Building a verifier
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Questions, murky points, feedback

https://forms.gle/Nds2CwBtEdUmMR4qQ8
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