
1

FOUNDATIONS &
SMT SOLVERS

02245 – Lecture 2

Christoph Matheja – 02245 – Program Verification

2

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Frontends,
Extensions

We are here

3

Satisfiability Modulo Theories Solvers

Christoph Matheja – 02245 – Program Verification

SMT

Decision
Procedures

Symbolic
Computation

Computer
Algebra

Mathematical
Logic

Software
Engineering

Computability
and

Complexity

Optimization
Verification

Circuit
Design

High
Performance
Computing

§ A foundational topic in
theoretical and applied
computer science

§ Our focus:
effectively applying
SMT technology to
program verification

4

But first: Recap

Christoph Matheja – 02245 – Program Verification

The Floyd-Hoare triple { P } S { Q } is valid if and only if
every execution of S that starts in a state satisfying precondition P
terminates without an error in a state satisfying postcondition Q.

SP

¬P

Q

¬Q

method foo(x: Int)
returns (r: Int)
requires x > 0
ensures r > y

{
// S
var y: Int := 7
r := x + y

}

5

Recap: Weakest Pre & Strongest Post

Christoph Matheja – 02245 – Program Verification

S WP(S, Q)
(total correctness)

SP(P, S)
(partial correctness: accepts errors/divergence)

var x forall x :: Q exists x :: Q

x := a Q[x / a] exists x0 :: P[x / x0] && x == a[x / x0]

assert R R && Q P && R

assume R R ==> Q P && R

S1; S2 WP(S1, WP(S2, Q)) SP(SP(P, S1), S2)

S1 [] S2 WP(S1, Q) && WP(S2, Q) SP(P, S1) || SP(P, S2)

SP(P, S)

SP(P, S) ==> Q

WP(S, Q)

P ==> WP(S, Q)

6

Mains steps of a tool for checking that { P } S { Q } is valid:

1. Compute WP(S, Q) è last lecture

2. Check whether P ==> WP(S, Q) is valid è delegate to SMT solver

Christoph Matheja – 02245 – Program Verification

Automating Program Verification

7

Mains steps of a tool for checking that { P } S { Q } is valid:

1. Compute SP(P, S) and SAFE(P, S)

2. Check whether SP(P, S) ==> Q is valid

and SAFE(P, S) is valid

è Homework

Christoph Matheja – 02245 – Program Verification

Alternative approach

< Homework W1 >

Solutions will be published on course page

Christoph Matheja – 02245 – Program Verification

9

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Frontends,
Extensions

10

Roadmap

Christoph Matheja – 02245 – Program Verification

source code
annotated with
specifications

Automated verifier

Intermediate Verification
Language

Generation of
proof obligations

Intermediate Verification
Language

Front-end

SMT solver
feedback

We are here

11

1. Propositional logic and SAT solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

Christoph Matheja – 02245 – Program Verification

Overview

12

Propositional Logic

Christoph Matheja – 02245 – Program Verification

Syntax
X: Boolean variable in Var

F ::= false | true | X | ¬F | F ∧ F | F ∨ F | F ⇒ F | F ⇔ F

Interpretation ℑ: 𝐕𝐚𝐫 → { true, false }

Satisfaction relation
ℑ ⊨ true iff always
ℑ ⊨ X iff ℑ X = true
ℑ ⊨ ¬F iff not ℑ ⊨ F
ℑ ⊨ F ∧ G iff ℑ ⊨ F and ℑ ⊨ G

ℑ is a model of F iff ℑ ⊨ F

ℑ ∷= [X = false, Y = true]

ℑ ⊨ ¬X ∨ Y

ℑ ⊨ X ⇒ Y

ℑ ⊨ ¬X ∨ Y ⇔ (X ⇒ Y)

13

§ F is satisfiable iff F has some model

§ F is unsatisfiable iff F has no model

§ F is valid iff every interpretation is a model of F
(¬F is unsatisfiable)

§ F is not valid iff some interpretation is not a model of F
(¬F is satisfiable)

Christoph Matheja – 02245 – Program Verification

Satisfiability & Validity

X ⇒ Y ⇒ Y

Models:	 X = true, Y = true , X = false, Y = true , X = true, Y = false

X ∧ ¬𝑌 ∧ (𝑋 ⇒ Y)

X ∧ 𝑋 ⇒ 𝑌 ⇒ 𝑌

X ∧ 𝑋 ⇒ 𝑌 ⇔ 𝑌

Model	of	¬F:	 X = false, Y = true

14

The Satisfiability Problem

Christoph Matheja – 02245 – Program Verification

§ A formula is satisfiable if it has a model

§ If yes, provide a model as a witness

X ∨ Y ∨ ¬Z
∧ U ∨ ¬Y
∧ (¬X ∨ ¬Z ∨ U ∨ V)

ℑ ∷= [
U	=	false	
V	=	false
X	=	true
Y	=	false
Z = false
]

Satisfiability Problem (SAT):
Given a propositional logic formula,
decide whether it is satisfiable.

15

§ For formulas in conjunctive normal
form (CNF), SAT is the classical
NP-complete problem

§ Many difficult problems can be
efficiently encoded

§ Every known algorithm is
exponential in the formula’s size

Christoph Matheja – 02245 – Program Verification

Complexity of SAT

16

Example: Boolean Pythagorean Triples

Christoph Matheja – 02245 – Program Verification

§ BPT: a triple of natural numbers with
§ Question: Can we color all natural numbers with just two colors such that

no BPT is monochromatic?
§ Answer: No! The set {1, ..., 7825} always contains a monochromatic BPT

§ This was first proven using a SAT solver
- number of combinations: 27825

- “the largest math proof ever” (ca. 200 TB)

§ Modern SAT solvers are efficient in practice

credits: Marijn J.H. Heule, “Everything’s Bigger in Texas - The Largest Math Proof Ever”, GCAI 2017

Christoph Matheja – 02245 – Program Verification

Exercise: Seating of Wedding Guests

§ Model the following problem as an instance of the SAT problem.

§ There are three chairs in a row: left, middle, right.

§ Can we assign chairs to Alice, Bob, and Charlie such that:
- Alice does not sit next to Charlie,
- Alice does not sit on the leftmost chair, and
- Bob does not sit to the right of Charlie?

Christoph Matheja – 02245 – Program Verification

Exercise

Solution

Christoph Matheja – 02245 – Program Verification

§ Model assignment via nine variables

§ Alice does not sit next to Charlie

§ Alice does not sit on the leftmost chair

§ Bob does not sit to the right of Charlie

§ Each person gets a chair

§ Every person gets at most one chair

§ Every chair gets at most one person

20

1. Propositional logic and SAT solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

Christoph Matheja – 02245 – Program Verification

Overview

21

§ Developed by Microsoft (under MIT license)

§ Building block of many verification tools including Viper

§ Various input formats and APIs
- Z3, SMTLIB-2, C, C++, Python, Java, Rust, OCaml, ...

§ For now: Use Z3 as a SAT solver

Christoph Matheja – 02245 – Program Verification

The Z3 Satisfiability Modulo Theories solver

22Christoph Matheja – 02245 – Program Verification

A first example (SMTLIB-2)

; declare variables
(declare-const X Bool)
(declare-const Y Bool)
(declare-const Z Bool)

; define formula (𝑋 ⇒ 𝑌 ⇒ 𝑍) ∧ 𝑋
(assert (=> X Y Z))
(assert X)

(check-sat)

(get-model) ; fails if unsat

$ z3 01-example.smt2

sat
(model
(define-fun Z () Bool

false)
(define-fun X () Bool

true)
(define-fun Y () Bool

false)
)

23Christoph Matheja – 02245 – Program Verification

A first example (Z3Py)

from z3 import *

declare variables
X = Bool('X')
Y = Bool('Y')
Z = Bool('Z')

define formula F
F = And(Implies(X, Implies(Y, Z)), X)

solve(F) # find a model for F

find a counterexample for F
solve(Not(F))

$ python .\02-example.py

[Z = False, X = True, Y = False]

[Z = False, X = False, Y = True]

F is satisfiable, this is a model

¬F is satisfiable, this is a model

24

§ You have to take CS Modeling, Physics, or Chemistry
§ For CS Modeling, you also need Discrete Math
§ For Verification, you need CS Modeling
§ For Physics and Chemistry, you need Statistics
§ Statistics and Discrete Math are at the same time
§ CS Modeling and Physics are at the same time
§ Verification and Chemistry are at the same time

Christoph Matheja – 02245 – Program Verification

Example: Course Selection

Is it possible to take Verification and all preliminaries?

Is it possible to take Physics and Discrete Math?

25

Solution: Course Selection

Christoph Matheja – 02245 – Program Verification

(assert
(and

(or ComputerScienceModelling Physics Chemistry)
(=> ComputerScienceModelling DiscreteMath)
(=> Verification ComputerScienceModelling)
(=> (or Physics Chemistry) Statistics)
(xor Statistics DiscreteMath)
(xor ComputerScienceModelling Physics)
(xor Verification Chemistry)

)
)

(declare-const Verification Bool)
; ...

(assert Verification)
(check-sat)
(get-model)

§ Use Z3 to check whether we can assign suitable seats to all wedding guests

§ There are three chairs in a row: left, middle, right.

§ We want to assign chairs to Alice, Bob, and Charlie such that:
- Alice does not sit next to Charlie,
- Alice does not sit on the leftmost chair, and
- Bob does not sit to the right of Charlie.

Christoph Matheja – 02245 – Program Verification

Exercise: Seating of Wedding Guests

Solutions in example files

04-wedding.smt2 / .py

Christoph Matheja – 02245 – Program Verification

28

Proofs with Z3

Christoph Matheja – 02245 – Program Verification

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x && y) == (!x || !y)")
(assert

(=
(not (and x y))
(or (not x) (not y))

)
)
(check-sat) ; result: sat

What does this tell us about De Morgan’s law?

29

Proofs with Z3

Christoph Matheja – 02245 – Program Verification

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x && y) == (!x || !y)")
(assert

(=
(not (and x y))
(or (not x) (not y))

)
)
(check-sat) ; result: sat

What does this tell us about De Morgan’s law?

there is an example for
which the law is true

30

Proofs with Z3

Christoph Matheja – 02245 – Program Verification

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x && y) == (!x || !y)")
(assert
(not
(=

(not (and x y))
(or (not x) (not y))

)
)

)
(check-sat) ; result: unsat

What does this tell us about De Morgan’s law?

31

Proofs with Z3

Christoph Matheja – 02245 – Program Verification

(declare-const x Bool)
(declare-const y Bool)

(echo "De Morgan's law: !(x && y) == (!x || !y)")
(assert
(not
(=

(not (and x y))
(or (not x) (not y))

)
)

)
(check-sat) ; result: unsat

What does this tell us about De Morgan’s law?

There is no counterexample

è the formula is valid

è De Morgan’s law holds

§ Here is an excerpt from a proof in the first homework assignment:

§ Use Z3 to prove the blue equivalence.

Christoph Matheja – 02245 – Program Verification

Using Z3 for Homework

valid: P ==> WP(assert R, Q)
iff

valid: P ==> (R && Q)
iff
valid: P ==> R
and valid: (P && R) ==> Q

iff
valid: SAFE(p, assert R)
and valid: SP(P, assert R) ==> Q

Solution

see code examples

Christoph Matheja – 02245 – Program Verification

34

Using a SAT solver

Christoph Matheja – 02245 – Program Verification

§ Is F satisfiable?

§ Is F valid?

SAT solverF

sat + witness

unsat

SAT solver¬F

sat + counterexample

unsat

¬F satisfiable ¬F unsatisfiable
=

F valid

counterexample: model of ¬ F

F satisfiable F unsatisfiable

witness: model of F

35

Mains steps of a tool for checking that { P } S { Q } is valid:

1. Compute WP(S, Q) è last lecture

2. Check whether entailment P ==> WP(S, Q) is valid è ask SAT solver

§ Check satisfiability of negation: P && !WP(S, Q)

§ unsat è

§ sat è model explains why { P } S { Q } is not valid

Christoph Matheja – 02245 – Program Verification

Using a SAT Solver for Program Verification

36

Using a SAT Solver for Program Verification

Christoph Matheja – 02245 – Program Verification

{ true }
// check that validity of true Þ a Ù ...
{ a Ù (b Ù (true Û (a Þ b)) Ú ¬b Ù (false Û (a Þ b))) Ú ¬a Ù (true Û (a Þ b) }
if (a) {
{ b Ù (true Û (a Þ b)) Ú ¬b Ù (false Û (a Þ b)) }
if (b) {

{ true Û (a Þ b) }
res := true

{ res Û (a Þ b) }
} else {

{ false Û (a Þ b) }
res := false

{ res Û (a Þ b) }
}

{ res Û (a Þ b) }
} else {
{ true Û (a Þ b) }
res := true

{ res Û (a Þ b) }
}
{ res Û (a Þ b) }

37

§ Entailment is not in propositional logic
- Integer-valued variables (x,X,y,Y) and numeric constants (0)
- Arithmetic operations (-) and comparisons (==)

§ Logic must support at least the expressions appearing in programs
- It is also useful to support quantifiers (e.g., for array algorithms)

§ General framework: first-order predicate logic (FOL)

Christoph Matheja – 02245 – Program Verification

Propositional logic is not enough

{ x == X && y == Y }
{ y == Y && y – Y == 0 }
// ... swap X and Y
{ x == Y && y == X }

Entailment to check:
(x == X && y == Y) ==> y == Y && y – Y == 0

38

1. Propositional logic and SAT solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

Christoph Matheja – 02245 – Program Verification

Overview

39

1. Sorts

§ specifies possible types

2. Typed Variables

3. Typed Function symbols

§ building blocks of terms

4. Typed Relational symbols

§ turn terms into logical propositions

5. Logical symbols

6. An equality symbol

Christoph Matheja – 02245 – Program Verification

Ingredients of Many-sorted First-order logic (FOL)

Bool, Int, Real, T

0, 1.5 +, *, _?_:_

0 x ? y - 17 : z*z + 1

< prime R

x < 0 prime(y+4) R(x,y,z)

∧ ∨ ¬ ⇒ ⇔ ∃ ∀ …

x, y, z, …

=

40

§ A signature 𝚺 is a set of
- at least one sort
- function symbols
- relational symbols (= does not count)

§ A 𝚺-formula is a logical formula over propositions
built from symbols in Σ

Christoph Matheja – 02245 – Program Verification

FOL Formulas

Σ = { 𝐈𝐧𝐭, 0, 1, +,∗, ≤}

Is this Σ-formula satisfiable?

∀x: 𝐈𝐧𝐭 ∃y: 𝐈𝐧𝐭 (y = x + 1 ∧ y ∗ y ≤ x ∗ x + 1 + 1 ∗ x + 1)

≤: 𝐈𝐧𝐭×𝐈𝐧𝐭 (type: binary relation)0, 1 ∶ 𝐈𝐧𝐭 (type: constant)

+∶ 𝐈𝐧𝐭×𝐈𝐧𝐭 → 𝐈𝐧𝐭
(type: function with 2 arguments)

41

FOL Formulas

Yes, if the symbols +,	*,	= have the
canonical meaning

No, if
- 1 actually means 2, or
- + actually means maximum

Christoph Matheja – 02245 – Program Verification

Σ = { 𝐈𝐧𝐭, 0, 1, +,∗, ≤}Is this Σ-formula satisfiable?

∀x: 𝐈𝐧𝐭 ∃y: 𝐈𝐧𝐭 (y = x + 1 ∧ y ∗ y ≤ x ∗ x + 1 + 1 ∗ x + 1)

Satisfiability of Σ-formulas depends on the admissible interpretations of symbols in Σ

determined by Σ-theories

42

§ A 𝚺-structure 𝕬 assigns
- a non-empty domain (set) 𝐔𝔄 to each sort U in Σ
- a function 𝑓𝔄 over domains (respecting types) to

each function symbol 𝑓 in Σ
- a relation 𝑅𝔄 over domains (respecting types) to

each relational symbol 𝑅 in Σ

§ A 𝚺-assignment 𝜷 maps variables x of sort
U to domain elements in 𝐔𝔄

§ A 𝚺-interpretation is a pair ℑ = (𝔄, 𝛽)

§ ℑ(𝑡) denotes the domain element obtained
by evaluating term 𝑡 in ℑ

Christoph Matheja – 02245 – Program Verification

FOL Σ-Interpretations Σ = { 𝐈𝐧𝐭, 𝑜𝑛𝑒, 𝑝𝑙𝑢𝑠, 𝑙𝑒𝑞 }

𝐈𝐧𝐭𝔄 ∷= ℤ

𝑜𝑛𝑒𝔄 ∷= 1
𝑝𝑙𝑢𝑠𝔄: 𝐈𝐧𝐭𝔄×𝐈𝐧𝐭𝔄 → 𝐈𝐧𝐭𝔄, 𝑎, 𝑏 ↦ 𝑎 + 𝑏

𝔄 ∷= (𝐈𝐧𝐭𝔄, 𝑜𝑛𝑒𝔄, 𝑝𝑙𝑢𝑠𝔄, 𝑙𝑒𝑞𝔄)

𝑙𝑒𝑞𝔄 ∷= 𝑎, 𝑏 ∈ 𝐈𝐧𝐭𝔄×𝐈𝐧𝐭𝔄 𝑎 ≤ 𝑏 }

𝛽: 𝐕𝐚𝐫 → 𝐈𝐧𝐭𝔄

ℑ 𝑝𝑙𝑢𝑠 𝑝𝑙𝑢𝑠 𝑜𝑛𝑒, 𝑜𝑛𝑒 , 𝑥
= plus𝔄(plus𝔄(one𝔄, one𝔄), 𝛽(𝑥))
= (1+1) + 𝛽(𝑥)

43

FOL Semantics

Christoph Matheja – 02245 – Program Verification

ℑ is a model of F iff ℑ ⊨ F

FOL formula F (excerpt) ℑ = (𝔄, 𝛽) ⊨ F if and only if
𝑡" = 𝑡# ℑ 𝑡" = ℑ(𝑡#)

𝑅(𝑡", … , 𝑡$) ℑ 𝑡" , … , ℑ 𝑡$ ∈ 𝑅𝔄

G ∧ H ℑ ⊨ G and ℑ ⊨ H
G ⇒ H If ℑ ⊨ G, then ℑ ⊨ H

∃𝑥: 𝐓 (G) For some v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ G
∀𝑥: 𝐓 (G) For all v ∈ 𝐓𝔄, ℑ[𝑥 ≔ v] ⊨ G

F is satisfiable iff F has some model

we can always
express equality
between terms

44

§ All symbols are uninterpreted

§ The meaning of functions and relations
is determined in the chosen model

§ Many formulas are satisfiable if we can
choose Σ-structures that defy the
intended meaning of functions and
relations

è Filter out unwanted Σ-structures

Christoph Matheja – 02245 – Program Verification

Issues with FOL Satisfiability Σ = { 𝐍𝐚𝐭, 𝑧𝑒𝑟𝑜, 𝑜𝑛𝑒, 𝑝𝑙𝑢𝑠, 𝑙𝑒𝑞 }

𝐅 ∷= ∃𝑥: 𝐍𝐚𝐭(𝑥 𝑝𝑙𝑢𝑠 𝑜𝑛𝑒 𝑙𝑒𝑞 𝑧𝑒𝑟𝑜)

sat: 𝐍𝐚𝐭 = ℕ, 𝑜𝑛𝑒𝔄 ∷= 0, leq ∷= ≤
𝑧𝑒𝑟𝑜𝔄 ∷= 1, 𝑝𝑙𝑢𝑠𝔄 ∷= +

sat: 𝐍𝐚𝐭 = ℕ, 𝑜𝑛𝑒𝔄 ∷= 1, leq ∷= ≤
𝑧𝑒𝑟𝑜𝔄 ∷= 0, 𝑝𝑙𝑢𝑠𝔄 ∷= −

infix notation for 𝑙𝑒𝑞(𝑝𝑙𝑢𝑠(𝑥, 𝑜𝑛𝑒), 𝑧𝑒𝑟𝑜)

45

§ A Σ-sentence is a formula without free variables

§ An axiomatic system AX is a set of Σ-sentences

§ The Σ-theory Th given by AX is the set of all Σ-sentences implied by AX

Christoph Matheja – 02245 – Program Verification

Satisfiability Modulo Theories

A Σ-formula F is satisfiable modulo Th iff
there exists a Σ-interpretation ℑ such that
§ ℑ ⊨ F , and
§ ℑ ⊨ G for every sentence G in Th.

A Σ-formula F is valid
modulo Th iff ¬F is not
satisfiable modulo Th.

§ Consider the signature Σ = { 𝐍𝐚𝐭, 𝑧𝑒𝑟𝑜, 𝑜𝑛𝑒, 𝑝𝑙𝑢𝑠, 𝑙𝑒𝑞 },
𝑧𝑒𝑟𝑜: 𝐍𝐚𝐭, 𝑜𝑛𝑒: 𝐍𝐚𝐭, 𝑝𝑙𝑢𝑠: 𝐍𝐚𝐭×𝐍𝐚𝐭 → 𝐍𝐚𝐭, 𝑒𝑞: 𝐍𝐚𝐭×𝐍𝐚𝐭

§ the theory Th given by the axioms

∀x: 𝐍𝐚𝐭 (x 𝑙𝑒𝑞 x) ∀x: 𝐍𝐚𝐭 ∀x: 𝐍𝐚𝐭 (x 𝑝𝑙𝑢𝑠 y 𝑙𝑒𝑞 y 𝑝𝑙𝑢𝑠 x)

§ and the formula F ∷= ∃𝑥: 𝐍𝐚𝐭(𝑥 𝑝𝑙𝑢𝑠 𝑧𝑒𝑟𝑜 𝑙𝑒𝑞 𝑜𝑛𝑒).

a) Give a model witnessing that F is satisfiable modulo Th.

b) Propose an axiom such that F is also valid modulo Th.

Christoph Matheja – 02245 – Program Verification

Exercise

Solution

a)
ℑ 𝑥 = 1
𝐍𝐚𝐭 = ℕ,
𝑜𝑛𝑒𝔄 ∷= 1,
𝑧𝑒𝑟𝑜𝔄 ∷= 0,
𝑝𝑙𝑢𝑠𝔄 ∷= +,
𝑙𝑒𝑞 ∷= =

b)
𝐍𝐚𝐭 = ℕ,
𝑜𝑛𝑒𝔄 ∷= 0,
𝑧𝑒𝑟𝑜𝔄 ∷= 1,
𝑝𝑙𝑢𝑠𝔄 ∷= +,
𝑙𝑒𝑞 ∷= =

Th-valid after adding axiom
∀x: 𝐍𝐚𝐭 (x 𝑝𝑙𝑢𝑠 𝑧𝑒𝑟𝑜 𝑙𝑒𝑞 x)

Christoph Matheja – 02245 – Program Verification

F ∷= ∃𝑥:𝐍𝐚𝐭(𝑥 𝑝𝑙𝑢𝑠 𝑧𝑒𝑟𝑜 𝑙𝑒𝑞 𝑜𝑛𝑒)

∀x: 𝐍𝐚𝐭 (x 𝑙𝑒𝑞 x) ∀x: 𝐍𝐚𝐭 ∀x: 𝐍𝐚𝐭 (x 𝑝𝑙𝑢𝑠 y 𝑙𝑒𝑞 y 𝑝𝑙𝑢𝑠 x)

48

§ Arithmetic (with canonical axioms)
- Presburger arithmetic: decidable
- Peano arithmetic: undecidable
- Real arithmetic: decidable

§ EUF: Equality logic with Uninterpreted Functions decidable
- Σ = { 𝐔,=, 𝑓, 𝑔, ℎ, … }
- arbitrary non-empty domain U
- axioms ensure that = is an equivalence relation
- arbitrary number of uninterpreted function symbols of any arity
- axioms do not constrain function symbols

§ We typically need a combination of multiple theories
- Program verification: theories for modeling different data types

Christoph Matheja – 02245 – Program Verification

Some important theories

Σ = { 𝐈𝐧𝐭, <, 0,1, + }
Σ = { 𝐈𝐧𝐭, <, 0,1, +,∗ }
Σ = { 𝐑𝐞𝐚𝐥, <, 0,1, +,∗ }

49

1. Propositional logic and SAT solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

Christoph Matheja – 02245 – Program Verification

Overview

50

§ Sorts
- Bool, Int, Real,

BitVec(precision)
- DeclareSort(name)

(uninterpreted)

§ Uninterpreted functions are
declared with parameter and
return types

§ Variables are uninterpreted
functions of arity 0
- Const(name, sort)

Christoph Matheja – 02245 – Program Verification

Using Theories (SMTLIB-2)
(declare-sort Pair)

(declare-fun cons (Int Int) Pair)
(declare-fun first (Pair) Int)

(declare-const null Pair)

; first axiom
(assert (= null (cons 0 0)))
; second axiom
(assert (forall ((x Int) (y Int))

(= x (first (cons x y)))
))

; formula (negated for validity check)
(assert (not (= (first null) 0)))

(check-sat)

51

§ Sorts
- Bool, Int, Real,

BitVec(precision)
- DeclareSort(name)

(uninterpreted)

§ Uninterpreted functions are
declared with parameter and
return types

§ Variables are uninterpreted
functions of arity 0
- Const(name, sort)

Christoph Matheja – 02245 – Program Verification

Using Theories (Z3Py)
from z3 import *

Pair = DeclareSort('Pair')

null = Const('null', Pair)

cons = Function('cons', IntSort(), IntSort(), Pair)
first = Function('first', Pair, IntSort())

ax1 = (null == cons(0, 0))
x, y = Ints('x y')
ax2 = ForAll([x, y], first(cons(x, y)) == x)

s = Solver()
s.add(ax1)
s.add(ax2)

F = first(null) == 0

check validity
s.add(Not(F))
print(s.check())

52

§ Encoding via
- uninterpreted sorts
- constants
- uninterpreted functions
- axioms enforcing the data type’s properties

§ We call such an encoding an
axiomatization

§ Week 5: advanced data types
- sets, sequences, trees
- accessors, mutators
- recursive functions

Christoph Matheja – 02245 – Program Verification

Custom theories for user-defined data types and operations
(declare-sort Pair)

(declare-fun cons (Int Int) Pair)
(declare-fun first (Pair) Int)

(declare-const null Pair)

; first axiom
(assert (= null (cons 0 0)))
; second axiom
(assert (forall ((x Int) (y Int))

(= x (first (cons x y)))
))

; formula (negated for validity check)
(assert (not (= (first null) 0)))

(check-sat)

53

Incorporating custom theories

Christoph Matheja – 02245 – Program Verification

Original verification condition: P ==> WP(S, Q) valid

A Σ-formula F is satisfiable modulo Th iff
there exists a Σ-interpretation ℑ such that
§ ℑ ⊨ F , and
§ ℑ ⊨ G for every sentence G in Th.

A Σ-formula F is valid
modulo Th iff !F is not
satisfiable modulo Th.

Enriched verification condition:
P ==> WP(S, Q) valid modulo custom theory

iff BP && P && !WP(S, Q) unsat
iff BP ==> P ==> WP(S, Q) valid

Background Predicate:
conjunction of all our axioms
defining our theory

54

Mains steps of a tool for checking that { P } S { Q } is valid:

0. Determine axioms of underlying theory è background predicate BP
§ Reusable: once for every type or function è Week 5
§ Z3 has built-in theories for common theories (e.g. arithmetic) è Today

1. Compute WP(S, Q) è Week 1 & 2

2. Check whether P ==> WP(S, Q) is valid è SMT solver
§ Check satisfiability of negation: BP && P && !WP(S, Q)
§ unsat è

§ sat è model explains why { P } S { Q } is not valid

Christoph Matheja – 02245 – Program Verification

Automating Program Verification

BP ==>
BP &&

55

§ Axiomatizations are part of the trusted codebase

§ Inconsistent axioms invalidate verification results

§ Axioms do not show up in verification problems

§ Axiomatizations require separate validation
- proofs, testing, profiling, ...

Christoph Matheja – 02245 – Program Verification

Axiomatize with Care

(declare-const null Int)

; inconsistent axioms
(assert (= null 0)
(assert (= null 17)

(assert (not
(> 42 23) ; wrong statement

))

(check-sat) ; unsat

false ==> P ==> WP(S, Q) is always valid

{ x == null } S { y > null }

§ Axiomatize a custom type for colors
- Color = Black | White | Red |

Green | Blue | Yellow

§ Your type should support two operations:
1. A function isInDanishFlag to determine

whether a color appears in the Danish flag
2. A function mix that takes two colors and

returns the color obtained from adding them
(see right); it does not matter what the function
returns when the resulting color is not
supported

§ Verify the program on the right with Z3

Christoph Matheja – 02245 – Program Verification

Exercise: Color Axioms

{ x == Red }
var g: Color := Green
var b: Color := Blue
r := mix(b, mix(x, g))
{ isInDanishFlag(r) }

Full solution: 02-smt/09b-colors-verification.smt

Christoph Matheja – 02245 – Program Verification

Solution

// BP ==>
{ x == Red } // ==>
{ isInDanishFlag(mix(Blue, mix(x, Green)) }
var g: Color := Green
{ isInDanishFlag(mix(Blue, mix(x, g)) }
var b: Color := Blue
{ isInDanishFlag(mix(b, mix(x, g)) }
r := mix(b, mix(x, g))
{ isInDanishFlag(r) }

; declarations
(declare-sort Color)
...

; background predicate
(assert (forall ...))

; precondition
(assert (= x Red))

; !WP(S, Q)
(assert (not
(isInDanishFlag ...)

))

(check-sat)

58

Z3 built-in theories

Christoph Matheja – 02245 – Program Verification

è no explicit background predicate needed

59

Z3 built-in theories

Christoph Matheja – 02245 – Program Verification

(Quantifier-free) Linear Integer/Real Arithmetic

60

Z3 built-in theories

Christoph Matheja – 02245 – Program Verification

Non-Linear Integer/Real Arithmetic

61

Z3 built-in theories

Christoph Matheja – 02245 – Program Verification

Quantifier-free fixed-size bitvector arithmetic

Exercise: use Z3 to find all suitable restaurant orders

Christoph Matheja – 02245 – Program Verification

https://xkcd.com/287/

Solution

see code examples

Christoph Matheja – 02245 – Program Verification

64

Using Z3 to verify a program

Christoph Matheja – 02245 – Program Verification

{ a = 1 Ù 0 £ b*b – 4*c }
discriminant := b*b – 4*a*c;
if (discriminant < 0) {
assert false

} else {
x := (b + discriminant) / 2

}
{ a*x2 + b*x + c = 0 }

Step 1: use WP to determine the verification condition

65

Using Z3 to verify a program

Christoph Matheja – 02245 – Program Verification

{ a = 1 Ù 0 £ b*b – 4*c }
// ==>
{ b*b – 4*a*c < 0 Ù false Ú
¬(b*b – 4*a*c < 0) Ù a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 }

discriminant := b*b – 4*a*c;
{ discriminant < 0 Ù false Ú
¬discriminant < 0 Ù a*((-b + discriminant) / 2)2 + b*((-b + discriminant) / 2) + c = 0 }

if (discriminant < 0) {
{ false }
assert false

{ a*x2 + b*x + c = 0 }
} else {
{ a*((-b + discriminant) / 2)2 + b*((-b + discriminant) / 2) + c = 0 }
x := (-b + discriminant) / 2

{ a*x2 + b*x + c = 0 }
}
{ a*x2 + b*x + c = 0 }

66

§ Step 1: use WP to determine the verification condition

§ Step 2: check whether the verification condition is valid
- Check satisfiability of negation: Pre && !WP(S, Post)

Christoph Matheja – 02245 – Program Verification

Using Z3 to verify a program

{ a = 1 Ù 0 £ b*b – 4*c }
// ==>
{ b*b – 4*a*c < 0 Ù false Ú
¬(b*b – 4*a*c < 0) Ù a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 }

; declarations … (full example available online)

; precondition
(assert (and (= a 1) (<= 0 (- (* b b) (* 4 c)))))

; negated weakest precondition
(assert (not <complicated expression here>))

(check-sat) ; want: unsat

67

Z3’s Theory Reasoning

Christoph Matheja – 02245 – Program Verification

§ Z3 selects theories based on the features appearing in formulas
- Most verification problems require a combination of many theories

§ Some theories are decidable, e.g., quantifier-free linear arithmetic
- SMT solver will terminate and report either “sat” or “unsat”

§ Some theories are undecidable, e.g., nonlinear integer arithmetic
- Especially in combination with quantifiers
- SMT solver uses heuristics and may not terminate or return “unknown”
- Results can be flaky, e.g., depend on order of declarations or random seeds

Quantifier-free linear integer arithmetic with uninterpreted functions

68

Working with quantifiers is non-trivial

Christoph Matheja – 02245 – Program Verification

(assert
(forall ((x Real))

(exists ((y Real))
(= x (* y y))

)
)

)

(check-sat)

$ z3 …
unknown

(assert
(exists ((x Int))
(forall ((y Real))
(=> (> y x) (> (* y y) 1))

)
)

)

(check-sat)

$ z3 …
sat

§ The N-queens problem is to place N-queens on an N x N
chess board such that no two queens threaten each other.

§ Use Z3 to compute a solution to the N-queens problem for
any given N.

§ Hints:
- We recommend using Z3Py or another Z3 API such that you can

write programs around your Z3 queries.
- Represent the board using multiple integer variables, e.g. X2 = 5

means the queen is in row 5 in column 2.
- distinct(l) is a shortcut for stating all elements of list l are

pairwise disjoint.
- You can easily check the diagonals by shifting the queens vertically

and then checking the rows.

Christoph Matheja – 02245 – Program Verification

Exercise (not covered in class)

[2, 4, 6, 8, 3, 1, 7, 5]

Solution

see code examples

Christoph Matheja – 02245 – Program Verification

71

Mains steps of a tool for checking that { P } S { Q } is valid:

0. Determine axioms of underlying theory è background predicate BP
§ Reusable: once for every type or function è Week 5
§ Z3 has built-in theories for common theories (e.g. arithmetic)

1. Compute WP(S, Q) è Week 1 & 2

2. Check whether BP ==> P ==> WP(S, Q) is valid è SMT solver
§ Check satisfiability of negation: BP && P && !WP(S, Q)
§ unsat è

§ sat è model explains why { P } S { Q } is not valid
§ unknown è decidability issues, strengthen theory, hacks è future classes

Christoph Matheja – 02245 – Program Verification

Wrap-up

72

What next?

Christoph Matheja – 02245 – Program Verification

source code
annotated with
specifications

Automated verifier

Intermediate Verification
Language

Generation of
proof obligations

Intermediate Verification
Language

Front-end

SMT solver
feedback

Building a verifier

Questions, murky points, feedback

Christoph Matheja – 02245 – Program Verification

https://forms.gle/Nds2CwBtEdUmR4qQ8

https://forms.gle/Nds2CwBtEdUmR4qQ8

