02245 - PROGRAM VERIFICATION

Christoph Matheja

(some slides have been developed together with Peter Muller)

Fall 2022

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

Outline

2.

3.

4.

Course Overview

Course Organization

Getting Started

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

How much confidence do we have in computer systems?

more confidence —

Testing is insufficient pentium™

sssssssss

= 1994 Intel® Pentium® Floating-point Division bug Wit

» Estimate: 1in 9 billion floating-point divisions inaccurate
* |ssue: missing entries in the lookup table

= Recall losses: $475 million (> 5 billion DKK in 2019)

= Bug was detected during experiments on number theory

extensive testing

no confidence

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

How much confidence do we have in computer systems?

more confidence OpenJDK'’s java.utils.Collection.sort() is broken:

The good, the bad and the worst case*

Stijn de Gouw! 2, Jurriaan Rot®!, Frank S. de Boer!':?, Richard Bubel?, and
Reiner Hihnle?

» TimSort: default sorting algorithm in OpenJDK and Android SDK
= Certain large arrays (>= 67M) lead to index-out-of-bounds errors

= Multiple attempts to fix related errors were ineffective

Program testing can be very effective to

extensive testing show the presence of bugs, but it is
nopelessly inadequate for showing their
_ absence. o
no confidence Edsger W. Dijkstra

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

How much confidence do we have in computer systems?

more confidence The only effective way to raise the
confidence level of a program is to give
a convincing proof of iis correciness.

Edsger W. Dijkstra

PARTITION(A, p,r)

l x = Alr]
2 i=p-1 At the beginning of
3 forj =ptor—1 each loop iteration:
4 if A[j] <x
correctness arguments 5 [l.’]:—l. L1 1. If p < k < i, then A[k] < z.
6 exchange Ali] with A[/] 2. lfi+1<k<j—1,then Alk] > .
7 exchange A[i + 1] with A[r] -
8 returni + 1 3. If £k =r, then A[k] =x.

extensive testing

no confidence

credits: Cormen et al., Introduction to Algorithms, 2009

(=]
—
=

Christoph Matheja — 02245 — Program Verification 6

Y

Textbook-style correctness arguments are insufficient

= Binary search in java.util.Arrays (2006) public static int binarySearch(

= Faithful implementation of algorithm from int[] a, int key) {

. int low = ©;
Programming Pearls, Bentley, 1986 int high = a.length - 1;

Is this implementation correct?
P while (low <= high) {
int mid = (low + high) / 2;
int midval = a[mid];

if (midval < key)
low = mid + 1;

else if (midvVal > key)
high = mid - 1;

else
return mid; // Rey found

}
return -(low + 1); // Rey not found

(=]
—
=

Christoph Matheja, Peter Muller — Program Verification 7

Y

How much confidence do we have in computer systems?

more confidence The only effective way to raise the
confidence level of a program is to give
a convincing proof of its correctness.

Edsger W. Dijkstra

Chord: A Scalable Peer-to-peer Lookup Service for Internet
correctness proofs Applications

lon Stoica; Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan®
MIT Laboratory for Computer Science
chord@lcs.mit.edu
http://pdos.lcs.mit.edu/chord/

correctness arguments
Three features that distinguish Chord from many other peer-to-

peer lookup protocols are its simplicity, provable correctness. and

_ _ provable performance. Chord 1s simple. routing a key through a se-
extensive testing

All 7 claimed invariants turned out to be incorrect!
no confidence

(=]
—
=

Christoph Matheja — 02245 — Program Verification 9

Y

How much confidence do we have in computer systems?

more confidence

correctness proofs

correctness arguments

extensive testing

% ‘« >
AN

specification
no confidence

machine-checked proofs 4= our focus: deductive verification tools

verification
technology

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

10

Interactive verification)

= Success stories: ,/
- CompCert: formally verified C compiler (2008)
- sel4: formally verified high-performance operating system microkernel (2009)
- EveryCrypt: formally verified crypto library (2020)

= Strengths:

- Can handle complex systems and properties

- Well-established trusted code base ‘ S V/N

= \Weaknesses

- Requires
- Very (CompCert: > 6 person years) A—J
- Possible detachment from production code or vendor lock-in “AC LZ

(=]
—
=

Christoph Matheja — 02245 — Program Verification 11

Y

Automated (or auto-active) Verification

|dea: “use verification like compilation”
- Specifications take the form of
- Analogies: TypeScript, Rust ownership & traits, Python type hints

Strengths:
- Substantially than interactive verification

- Integrates into existing development processes
- More annotations =» more correctness guarantees

Weaknesses:
- Less expressive than interactive verification
- May produce false positives (due to undecidability)
- Still requires effort and expertise

Dafny [‘

P*xrust —«1

cC

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

12

Prusti — a Rust Verifier

File Edit Selection View Go Run Terminal Help

append-example.rs - VIS-talk - Visual Studio Code

append-example.rs X

home > cmath > Downloads > prusti-tutorial-examples >

1

®0A0

struct List {

val:

i32,

next: Option<Box<List>>

}

Dfn client(a: &mut List, b: &mut List) E

old len = b.len();

append(a, 100)

assert!(b.len() == old len);

M

D> Verify with Prusti

append-example.rs

Christoph Matheja
(slides developed together with Peter Miiller from ETH Zurich)

Teaser for upcoming course:
02245 - PROGRAM VERIFICATION

=]
=
=

Fall 2022

M

/ Verification succeeded (3.6s) rust-analyzer ~UTF-8 LF Rust & [®

(live demo)

(more examples in teaser video)

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

13

Outline

1. Why Program Verification?

3. Course Organization

4. Getting Started

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

14

Course objectives

How does this work?
How do we apply and implement this?

AN

Why these results?

How to specify properties? —

How to write good specifications?

source code

annotated with automated verifier
specifications I
feedback

What does this tell us? How do we get this?

(=]
—
=

Christoph Matheja — 02245 — Program Verification 15

Y

Architecture of automated program verifiers

Automated verifier

Front-end

¥

Intermediate Verification

specifications La%age

source code
annotated with

Intermediate Verification
Language

§

Generation of
proof obligations

y

SMT solver

feedback

Automated verifiers are often
implemented as a tool stack

Stepwise of
programs into logical formulas
(and back for error reporting)

Each transformation deals
with one verification problem

Requirements:

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

16

Roadmap

source code
annotated with

specifications

feedback

Automated verifier

Front-end

¥

Intermediate Verification
Language

4

Intermediate Verification
Language

§

Generation of
proof obligations

y

SMT solver

Core reasoning principles

Generation of proof obligations

Working with SMT solvers
Error reporting

Verification challenges
Advanced reasoning and
specification principles

Automation via encoding to
lower levels

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

17

Tentative course outline

Foundational oy
. Building a Loops and
— — . . —
Reg Soning S sl first verifier procedures
Principles
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models

!

Frontends,
Extensions

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

18

Outline

1. Why Program Verification?

2. Course Overview

4. Getting Started

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

19

Infrastructure

= Website: http://courses.compute.dtu.dk/02245

- Course material (slides + webpage) is self-contained; reading references is optional
- Material will be available at least one day before each lecture

= 7 5ETCS course = involves homework

= Classes
- Lectures: Thursday 13:00 — 17:00, room B321-H033

- Question time (for help with material, homework, etc.)
* Physical: Monday 13:00 — 14:00, room B321-017
* Online: Tuesday 18:00 — 19:00, MS Teams

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

20

http://courses.compute.dtu.dk/02245

Lectures are meant to be interactive (red slides and boxes)

Many in-class exercises involve verification tools
- Make sure to have them at hand when coming to class
- Typically 5 — 30 min for each exercise
- Teamwork is encouraged

Discuss exercise solutions
Feel free to ask questions at any time

Feedback is highly appreciated

- This is new material, your feedback will improve it ©

Think about questions in these

boxes before the lecture

=
—
=

i

Christoph Matheja — 02245 — Program Verification

21

Examination

= Completeness and quality of (size: 2-3)

preparation for projects
» Weekly deadline until project release
« Solutions will be marked and discussed in class

build a verification tool from scratch
design a new verification methodology
- Yes, the total is 115% ©
- Project deadline: November 27, 23:59
- No reports but submissions must be well-documented and justified

oral exam

- Project presentation (ca. 7min, no slides needed)
- Discussion of projects and course content (ca. 20 min)

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

22

Outline

1. Why Program Verification?

2. Course Overview

3. Course Organization

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

23

Tentative course outline

But first: using a verifier

__

| asoning first verifier procedures :
: Principles :
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models
Frontends,
Extensions
DTU _ . _—
Christoph Matheja — 02245 — Program Verification 24

Y

The Viper Verification Framework

= Viper language
- Models verification problems
- Some statements are not executable

= Two verification backends
- Carbon (close to what you will build)

= For now: Programming language

» Later: Automate new methodologies

- Silicon

¥

[—

VIiPER

with a built-in verifier

e
==

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

25

Installing Viper

Install Java 11+ (64-bit)
- setJava HOME and PATH

= |Install Visual Studio Code (64-bit)

= |n Visual Studio Code:
- Open the extensions browser
(0 +Ctrl+X or {+38+X)
- Search for Viper
- Install the extension and restart

= Create and verify the file test.vpr (right)

= Switch to carbon and verify test.vpr again
- click on silicon (bottom left) to switch

EXTEN.. ¥ O = -
Viper

Viper 222
This extension provides inter...
Chair of Programming Met... bl

Inference for Viper 003
Formal specification inferenc...
Chair of Programming ... | Install

Viper4u aks fork 0.0.6
B:? Display AKS within VS Code
Viperdu Install
Prusti Assistant 05.5

Verify Rust programs with th...
Chair of Programming ... | Install

) File Edit Selection View Go Run Terminal Help Extension: Viper - Visual Studio Code — O X

= Extension: Viper X m --

Viper viper-admin.viper
Chair of Programming Methodology - ETH Zurich | @ 1,
This extension provides interactive IDE features for verifying programs i...

Set Color Theme | Disable Uninstall N $5% This extension is enabled globally.

Details Feature Contributions

#Changelog
v.2.2.2 — Viper Release 2020.1

* Now Viper IDE only uses the latest officially released version of Viper backends (by default).
Custom backend versions can be specifid in User Settings.

* Small fixes after migrating the extension to the new name. A
v.2.2.1
®0A0 & N
) File Edit Selection View Go Run - viper-is-working.vpr - Visual St... X

= viper-is-working.vpr X

// filename: test.vpr

method test() {}

i<=(n+ 1)
res == (i -1) *1i / 2
{
res := res + i
i:=1i+1
}
14 }

®O0A0 silico€ v Successfully verified viper-is-working.vpr 0. Spaces:2 UTF-8 CRLF Viper

& 0

=
—
=

i

Christoph Matheja, Peter Muller — Program Verification

26

https://www.oracle.com/java/technologies/javase-downloads.html
https://code.visualstudio.com/

Viper methods

method triple(x: Int) returns (r: Int)

b O

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

27

Viper methods

%all Viper statements are put in methods

&

read-only input parameters

method triple(x: Int, flag: Bool)

returns (r: Int) <

{
if (flag) {

r =3 * X ¢
} else {
var y: Int <

y 1= X + X
r:=x +y

| | read-write output parameters

| | no explicit return statements

| | local variable declaration

O

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

28

Assertions

method triple(x: Int, flag: Bool) " assert expr tests if
returns (r: Int) expr evaluates to true
{ - Yes: no effect
if (flag) { - No: runtime error
r:=3 * x
* Testing: no assertion
} else { error for chosen inputs
var y: Int
Y : XX = Verification: no assertion
r:=X+y _
error for all inputs
}
} Which assertions hold?

(=]
—
=

Christoph Matheja — 02245 — Program Verification 29

Y

Postconditions

method triple(x: Int) returns (r: Int) specify
how returned outputs
{ are related to inputs
var y: Int - Default: true
y 1= X + X
r:=XxX+y
}

method client() {
var z: Int

assert z == 21

(=]
—
=

Christoph Matheja — 02245 — Program Verification 31

Y

Postconditions

method triple(x: Int) returns (r: Int) specify
how returned outputs
{ O are related to inputs
var y: Int - Default: true
y 1= X + X
\ reEx Ty ek o 3 % = Checked against

implementation for all

ossible parameters
method client() { P P

var z: Int
= Guaranteed to hold

assert z == 21 after for
Q supplied parameters

}

(=]
—
=

Christoph Matheja — 02245 — Program Verification 32

Y

Alternative Implementation

method triple(x: Int) returns (r: Int) = Some implementations
ensures r == 3 * x do not work for
{ w— arbitrary inputs
X =3
ST Q = A precondition filters
} : out undesirable inputs

method client() {
var z: Int
z := triple(7)

¥

assert z

== 21

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 33

Preconditions

method triple(x: Int) returns (r: Int)

ensures r == 3 * x

r.
r.

¥

method client() {
var z: Int

X / 2
6 * pr

assert z == 21

specify
on what inputs a
method can be called
- Default: true

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

34

Preconditions

method triple(x: Int) returns (r: Int) specify
on what inputs a
ensures r == 3 * x method can be called
{ Q - Default: true
r:=x/ 2
r:i=6%r DES 8T e R = Guaranteed at the
) beginning of method

. implementation
method client() {

var z: Int 7 % 2 ==
= Checked before
assert z == 21 Q for
} supplied parameters

=

Christoph Matheja — 02245 — Program Verification

Y

Exercise

Write at least two Viper implementations for the method below that verify.
Try to find one that does not compute the maximum.

method max(x: Int, y: Int) returns (r: Int)
ensures r >= X
ensures r >=y // conjunction of postconditions

{

// TODO
} X

=
—
=

Christoph Matheja — 02245 — Program Verification

i

36

Contracts

A method contract consist of the method’s
= name,
= |nput and output parameters, and

Contracts must be
upheld by method calls
and implementations.

= pre- and postconditions.

method triple(x:

{

¥

requires x % 2
3

*

ensures r ==
// implementation
r:=x/ 2
r:=6*r <::>

Int) returns (r: Int)

0

» method client()

{
triple(7) Q

// violates precond.

¥

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

38

Underspecification

method triple(x: Int) returns (r: Int)

* |Implementation detalils
are often irrelevant

= Contracts may

than an
implementation needs

than an
implementation gives

Give another contract
Implementation.

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

39

Veriftying Method Calls

method triple(x: Int) returns (r: Int)
requires x > ©
ensures r > X

method client() {
var z: Int

Z := tr‘iple(7)<::>

Q What is happening here?

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

41

Abstract Methods

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

method isgrt(x: Int) returns (r: Int)
requires x >= 0
ensures X >= r * p
ensures x < (r+l1) * (r+l)

method foo(a: Int) returns (b: Int)
requires a > ©
ensures b > a

b := isqrt(a)
b := triple(a)

O

= Contracts without Implementations
- abstract from hard-to-verify code
- abstract from unknown implementation

= Verification and good software
engineering facilitate each other
- Incremental development by refinement

- Contracts become simpler if every
method has a single responsibility

- Avoid premature optimizations

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 44

Exercise

Consider the method maxSum with the following signature:

method maxSum(x: Int, y: Int) returns (sum: Int, max: Int)

maxSum is supposed to store the sum of x and y in variable sum and the maximum of x and y in
variable max, respectively.

a) Define a reasonable contract for maxSum.

b) Implement a method that calls maxSum on 1723 and 42. Test your contract by adding assertions
after the call. Improve your contract if any assertion fails.

c) Implement maxSum.

Now, consider a method reconstructMaxSum that tries to determine the values of maxSum's input
parameters from the output parameters, i.e. it reconstructs x and y from sum and max.

d) Write an abstract method with a postcondition specifying the behaviour of reconstructMaxSum.

e) Can you give an implementation of reconstructMaxSum? If not, can you implement it after
adding a precondition?
f) Write a client to test your implementation of reconstructMaxSum.

s Christoph Matheja — 02245 — Program Verification

45

More abstract methods

method unsound(x: Int)
returns (r: Int)

method test() {
var a: Int
a := unsound(17)

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

47

Wrap-up: Informal Overview

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

49

Tentative course outline

Building a Loops and
— . . —

SV SelvErs first verifier procedures
Advanced I Heaps and I Abstraction in I Permission
data types objects specifications models

!

Frontends,
Extensions

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

51

Outline

2. Formalizing contracts

3. Reasoning about contracts
4. Epilogue

DTU

Y

Christoph Matheja — 02245 — Program Verification

52

The Program Verification Task

Given a program

and a specification spec,

give a proof

that all program executions

comply with spec

fn abs(x:132) -> i32 { @

if x >= 0 {
return Xx

} else {
return -x

}
}

spec: abs(x) returns |x|

Does every execution
comply with spec?

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

53

Verification must be rooted in rigorous mathematics

Given a program

g Form
. = ‘Avyljtphlications METhOdS
semantics e

w
and a specification spec,

formal logic
v

give a proof
automated provers

v
that all program executions
comply with spec program logics Floyd-Hoare logic
—

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

Outline

1. Why do we need formal foundations?

3. Reasoning about contracts

4. Epilogue

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

58

Making it formal

Program

Program

veV o(v)

initial state

assign values to variables in Var

States = {o:V — Int|V CVarandV finite }

describes how states evolve during program execution

var y; y =X + 7; r:i=XxX+y
— veV o(v) — veV o(v) — veV o(v)
X 35 X 35 X 35
r 0 r 0 r 77
y -123 y 42 y 42
final state

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 59

Making it formal

capture properties of program states

Pred = { P|P: States — Bool }

Logical characterization

Set characterization

P = {0 € States | 6(x) # 0}

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

60

Making it formal

Floyd-Hoare

acceptable

method foo(x: Int)
returns (r: Int)

ensures r >y

{
var y: Int
y =X + 7
ri=X+Yy
}

capture properties of (possibly infinitely many) executions

{Pre} s { Post}

states / \ acceptable final states

= [mplicit I/O parameters

var y;
y =X + 7;
r =X +Yy
{r>y}

= Moved

= Omit types (only Int)

and postcondition

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

61

Making it formal

Thetriple { Pre } S { Post }

is valid if and only if

when program S is started in any state in Pre,
then S terminates in a state in Fost.

Pre S

—-Pre

Post

—Post

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

62

Which pictures correspond to valid Floyd-Hoare triples?

} S { Post } isvalid iff when program S is started in any state in , then S terminates in a state in Fost.

Christoph Matheja — 02245 — Program Verification

Which triples are valid?

Christoph Matheja — 02245 — Program Verification

65

Outline

1. Why do we need formal foundations?

2. Formalizing contracts

4. Epilogue

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

66

Reasoning about triples

= Argue as rigorously as possible that the Floyd-Hoare triple described by the
following Viper method is valid.

= Hint: annotate the file 03-quintuple.vpr

method quintuple(x: Int) returns (r: Int)
requires x > 0
ensures r > 4 * X

var y: Int

y := 2 * x
var z: Int
Zz = 3 * X
r:i=y + z

=
—
=

Christoph Matheja — 02245 — Program Verification

i

67

How do we systematically prove a triple valid?

Determine a verification condition VC
- VC is a predicate

- VC is valid iff it is true for all states

Soundness: VC is valid - triple is valid

Completeness: triple is valid - VC is valid

Predicate transformers describe how
predicates evolve during program execution

Automated verifier

Front-end

,
1

SMT solver

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

69

Forward Reasoning

{ Pre } S { Post }

Forward VC: is the strongest postcondition SP(Fre, S)
(all final states that we can reach from Pre)
of ~re and program S contained in Fosi?

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

70

Informal Forward Reasoning

Are all final states that we can reach

from contained in ?
y will have some value var y;
{ x>0}
y = X + 7; y willbe x + 7
{x>08& Yy ==x+7}
ywillbex + vy ri=Xx+y
{ x>08 Yy ==

x+7 && r == x+y } fr ==x+y
andx > ©
thenr > vy

(=]
—
=

Christoph Matheja — 02245 — Program Verification 71

Y

Backward Reasoning

{ Fre } S { Post }

execution

-
o

Backward VC: is /“re included in the weakest precondition WP(S, Fost)
(all initial states from which we must terminate in Post)
of program S and Fosi?

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

72

Informal Backward Reasoning

this is true if
{ forall y :: x >0 } x >0

y could have any

value before its var y;
declaration
{ x>0}
whatever we assign
y =X+ 7; toy, we have x > ©
{x+y >y}

X + y must have been

greater than y before . . —
Is included in all initial states from

which we must terminate In ?

(=]
—
=

Christoph Matheja — 02245 — Program Verification 73

Y

PLO: a first programming language
X Iis a variable in Var z is a constant in Int

Arithmetic expressions
a 2 9= x | z | a+ a a-a | a/a | a%a

Boolean expressions
b 2 9= true | false | a<a| a=a | b&&b|b || b]| !'b]

Predicates (incomplete)
P, Q, R ::= b | P& P | P==>P | exists x :: P | forall x :: P |

Statements in PLO
S 2 9= var x | x:=a | S;S | S[]S | assert P | assume P

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

74

Local variable declarations: var x

Declares an uninitialized variable x that
var x; var x; overshadows any existing x.

SP(P, var x)

var Xx;

Q WP(var x, Q) ::= forall x ::

exists x ::

P

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

75

Assertions: assert R

assert x > 5

O

Crashes if R does not hold in the current
assert x > 7 state; otherwise, no effect.

X

SP(P, assert R) P & R

WP(assert R, Q)

R && 0

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

76

Sequential composition: S1;S2

==> WP First execute S1, then S2.
sp S1;
{ R} SP(P, S1;S2) ::= SP(SP(P,S1), S2)
SP ==>

WP
WP(S1;S2, Q)

WP(S1, WP(S2, Q))

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

77

Nondeterministic choice: S1 [] S2

assert x > @ [] assert y > © Executes eijther S1 or S2.

Q

SP(P, S1 [] S2)
;= SP(P,S1) || SP(P, S2)

assert x*x > @ [] assert x+y > ©

v,

WP(S1 [] S2, Q)

assert x > 0 [] assert y > ©

D= WP(S1, Q) && WP(S2, Q)

v,

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

78

Assumptions: assume R

» Verification-specific statement

= Not executable
= Part of trusted code base

assume X > ©

O

assume false

O

Nothing happens if R holds in the
current state; otherwise, magye.

assume x > 5

O SP(P, assume R) P & R

WP(assume R, Q)

|
X
Il
|
\%4
O

assume X > ©

Q

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification 79

Assignment:. X

X =17 + y

d

)

Assigns the value of a (evaluated in the initial
state) to x in the final state.

WP(x := a, Q) ::= Q[x / a]

E[x / F]: E where every x is replaced by F

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

80

Assignment:. X

X =17 + y

d

Assigns the value of a (evaluated in the initial
state) to x in the final state.

WP(x := a, Q) ::= Q[x / a]

E[x / F]: E where every x is replaced by F

SP(P, x :=a) ::= P &% x == a

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

81

Assignment: x

17 + vy

X

+

d

Assigns the value of a (evaluated in the initial
state) to x in the final state.

WP(x := a, Q) ::= Q[x / a]

E[x / F]: E where every x is replaced by F

SP(P, x := a) ::= exists x0 ::
P[x / x0] & x == a[x / x0]

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

82

Proof annotations via overlapping Floyd-Hoare triples

upper implies lower

upper implies lower

valid triple

valid triple

valid triple

— ek

—

y=2*x,
Z := 3 * X;
r:=y+ z

= Vvalid triple

O

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

83

Exercise

= What is wrong with the following proof?

=
—
=

Christoph Matheja — 02245 — Program Verification

i

84

Exercise

Left half of room: use WP to check

which triples are valid

Right half of room: use SP to check
which triples are valid

exists x0 :: P[x / x0] && x == a[x / x0]
Q[x / a]

=
—
=

i

Christoph Matheja — 02245 — Program Verification

86

Outline

1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

90

Strongest Post vs. Weakest Pre — Does it matter?

(=]
—
=

Christoph Matheja — 02245 — Program Verification

Y

91

Wrap-up

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

93

Where are we?

source code
annotated with
specifications

feedback

Automated verifier

Front-end

A d

Intermediate Verification
Language

o

Intermediate Verification
Language

SMT solver

Viper language

WP (our preference)
SP (used later)

next lecture

(=]
—
=

Y

Christoph Matheja — 02245 — Program Verification

95

