
1

02245 – PROGRAM VERIFICATION

Christoph Matheja
(some slides have been developed together with Peter Müller)

Fall 2022

Christoph Matheja – 02245 – Program Verification

3

Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started

Christoph Matheja – 02245 – Program Verification

4Christoph Matheja – 02245 – Program Verification

How much confidence do we have in computer systems?

no confidence

more confidence

extensive testing

Testing is insufficient

§ 1994 Intel® Pentium® Floating-point Division bug

§ Estimate: 1 in 9 billion floating-point divisions inaccurate

§ Issue: missing entries in the lookup table

§ Recall losses: $475 million (> 5 billion DKK in 2019)

§ Bug was detected during experiments on number theory

5Christoph Matheja – 02245 – Program Verification

How much confidence do we have in computer systems?

no confidence

more confidence

extensive testing

§ TimSort: default sorting algorithm in OpenJDK and Android SDK

§ Certain large arrays (>= 67M) lead to index-out-of-bounds errors

§ Multiple attempts to fix related errors were ineffective

Program testing can be very effective to
show the presence of bugs, but it is
hopelessly inadequate for showing their
absence.

Edsger W. Dijkstra

6Christoph Matheja – 02245 – Program Verification

How much confidence do we have in computer systems?
The only effective way to raise the
confidence level of a program is to give
a of its correctness.

Edsger W. Dijkstra

convincing proof

no confidence

more confidence

extensive testing

correctness arguments

At the beginning of
each loop iteration:

credits: Cormen et al., Introduction to Algorithms, 2009

7

Textbook-style correctness arguments are insufficient
§ Binary search in java.util.Arrays (2006)
§ Faithful implementation of algorithm from

Programming Pearls, Bentley, 1986

Christoph Matheja, Peter Müller – Program Verification

public static int binarySearch(
int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (low <= high) {

int midVal = a[mid];

if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found

}

int mid = (low + high) / 2;

Is this implementation correct?

8

Textbook-style correctness arguments are insufficient
§ Binary search in java.util.Arrays (2006)
§ Faithful implementation of algorithm from

Programming Pearls, Bentley, 1986

§ No! mid might overflow for large arrays!

§ It was inconceivable at the time that someone
would use arrays with > 2!" elements

§ Bug remained in the standard library for > 9 years

Christoph Matheja, Peter Müller – Program Verification

public static int binarySearch(
int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (low <= high) {

int midVal = a[mid];

if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found

}

int mid = (low + high) / 2;

Is this implementation correct?

9Christoph Matheja – 02245 – Program Verification

How much confidence do we have in computer systems?
The only effective way to raise the
confidence level of a program is to give
a of its correctness.

Edsger W. Dijkstra

convincing proof

no confidence

more confidence

extensive testing

correctness proofs

correctness arguments

All 7 claimed invariants turned out to be incorrect!

10

How much confidence do we have in computer systems?

Christoph Matheja – 02245 – Program Verification

machine-checked proofs

extensive testing

correctness proofs

our focus: deductive verification tools

source code

specification

verification
technology

no confidence

more confidence

correctness arguments

11

§ Success stories:
- CompCert: formally verified C compiler (2008)
- seL4: formally verified high-performance operating system microkernel (2009)
- EveryCrypt: formally verified crypto library (2020)

§ Strengths:
- Can handle complex systems and properties
- Well-established trusted code base

§ Weaknesses
- Requires expert knowledge
- Very labor-intensive (CompCert: > 6 person years)
- Possible detachment from production code or vendor lock-in

Christoph Matheja – 02245 – Program Verification

Interactive verification

12

§ Idea: “use verification like compilation”
- Specifications take the form of source code annotations
- Analogies: TypeScript, Rust ownership & traits, Python type hints

§ Strengths:
- Substantially less effort than interactive verification
- Integrates into existing development processes
- More annotations è more correctness guarantees

§ Weaknesses:
- Less expressive than interactive verification
- May produce false positives (due to undecidability)
- Still requires effort and expertise

Christoph Matheja – 02245 – Program Verification

Automated (or auto-active) Verification

13Christoph Matheja – 02245 – Program Verification

Prusti – a Rust Verifier

(more examples in teaser video)(live demo)

14

Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started

Christoph Matheja – 02245 – Program Verification

15

source code
annotated with
specifications

automated verifier

Course objectives

Christoph Matheja – 02245 – Program Verification

How does this work?
How do we apply and implement this?

How to specify properties?

How to write good specifications?
Why these results?

feedback

What does this tell us? How do we get this?

16

source code
annotated with
specifications

§ Automated verifiers are often
implemented as a tool stack

§ Stepwise compilation of
programs into logical formulas
(and back for error reporting)

§ Each transformation deals
with one verification problem

§ Requirements:
- reasoning principles
- verification methodologies
- engineering practices

Christoph Matheja – 02245 – Program Verification

Architecture of automated program verifiers

feedback

Automated verifier

Front-end

Intermediate Verification
Language

Intermediate Verification
Language

Generation of
proof obligations

SMT solver

17

source code
annotated with
specifications

1. We learn how to build and use a
verification tool for a small
programming language
- Core reasoning principles
- Generation of proof obligations
- Working with SMT solvers
- Error reporting

2. We extend the language by
advanced features
- Verification challenges
- Advanced reasoning and

specification principles
- Automation via encoding to

lower levels

Christoph Matheja – 02245 – Program Verification

Roadmap

feedback

Automated verifier

Front-end

Intermediate Verification
Language

Intermediate Verification
Language

Generation of
proof obligations

SMT solver

1

1

1

11

2

2

2

2

18

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Frontends,
Extensions

19

Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started

Christoph Matheja – 02245 – Program Verification

20

§ Website: http://courses.compute.dtu.dk/02245
- Course material (slides + webpage) is self-contained; reading references is optional
- Material will be available at least one day before each lecture

§ 7.5 ETCS course è involves homework

§ Classes
- Lectures: Thursday 13:00 – 17:00, room B321-H033
- Question time (for help with material, homework, etc.)

• Physical: Monday 13:00 – 14:00, room B321-017
• Online: Tuesday 18:00 – 19:00, MS Teams

Christoph Matheja – 02245 – Program Verification

Infrastructure

http://courses.compute.dtu.dk/02245

21

§ Many in-class exercises involve verification tools
- Make sure to have them at hand when coming to class
- Typically 5 – 30 min for each exercise
- Teamwork is encouraged

§ Discuss exercise solutions

§ Feel free to ask questions at any time

§ Feedback is highly appreciated
- This is new material, your feedback will improve it J

Christoph Matheja – 02245 – Program Verification

Lectures are meant to be interactive (red slides and boxes)

Think about questions in these
boxes before the lecture

22

§ Completeness and quality of group projects (size: 2-3)
- 15% Homework: preparation for projects

• Weekly deadline until project release
• Solutions will be marked and discussed in class

- 40% Project A: build a verification tool from scratch
- 60% Project B: design a new verification methodology
- Yes, the total is 115% J
- Project deadline: November 27, 23:59
- No reports but submissions must be well-documented and justified

§ Individual oral exam
- Project presentation (ca. 7min, no slides needed)
- Discussion of projects and course content (ca. 20 min)

Christoph Matheja – 02245 – Program Verification

Examination

23

Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started

Christoph Matheja – 02245 – Program Verification

24

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Frontends,
Extensions

But first: using a verifier

25

§ Viper language
- Models verification problems
- Some statements are not executable

§ Two verification backends
- Carbon (close to what you will build)
- Silicon

§ For now: Programming language
with a built-in verifier

§ Later: Automate new methodologies

Christoph Matheja – 02245 – Program Verification

The Viper Verification Framework

Rust
(ETH, UBC, DTU)

Go
(ETH Zürich)

Java
(U. Twente)

Intermediate Language

Verifier (carbon)

Boogie (Microsoft)

Z3
(Microsoft)

26

§ Install Java 11+ (64-bit)
- set Java_HOME and PATH

§ Install Visual Studio Code (64-bit)

§ In Visual Studio Code:
- Open the extensions browser

(⇧+Ctrl+X or ⇧+⌘+X)
- Search for Viper
- Install the extension and restart

§ Create and verify the file test.vpr (right)

§ Switch to carbon and verify test.vpr again
- click on silicon (bottom left) to switch

Christoph Matheja, Peter Müller – Program Verification

Installing Viper

check that no errors
are reported here

// filename: test.vpr
method test() {}

https://www.oracle.com/java/technologies/javase-downloads.html
https://code.visualstudio.com/

27

Viper methods

Christoph Matheja – 02245 – Program Verification

method triple(x: Int) returns (r: Int)
{

r := 3 * x
}

28

Viper methods

Christoph Matheja – 02245 – Program Verification

method triple(x: Int, flag: Bool)
returns (r: Int)

{
if (flag) {

r := 3 * x
} else {

var y: Int
y := x + x
r := x + y

}
}

all Viper statements are put in methods read-only input parameters

read-write output parameters

no explicit return statements

local variable declaration

29

§ assert expr tests if
expr evaluates to true
- Yes: no effect
- No: runtime error

§ Testing: no assertion
error for chosen inputs

§ Verification: no assertion
error for all inputs

Christoph Matheja – 02245 – Program Verification

Assertions

method triple(x: Int, flag: Bool)
returns (r: Int)

{
if (flag) {

r := 3 * x
assert r > 0

} else {
var y: Int
y := x + x
r := x + y
assert r == 3 * x

}
} Which assertions hold?

30

§ assert expr tests if
expr evaluates to true
- Yes: no effect
- No: runtime error

§ Testing: no assertion
error for chosen inputs

§ Verification: no assertion
error for all inputs

Christoph Matheja – 02245 – Program Verification

Assertions

method triple(x: Int, flag: Bool)
returns (r: Int)

{
if (flag) {

r := 3 * x
assert r > 0

} else {
var y: Int
y := x + x
r := x + y
assert r == 3 * x

}
} Which assertions hold?

31

§ Postconditions specify
how returned outputs
are related to inputs
- Default: true

Christoph Matheja – 02245 – Program Verification

Postconditions

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

{
var y: Int
y := x + x
r := x + y

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

32

§ Postconditions specify
how returned outputs
are related to inputs
- Default: true

§ Checked against
implementation for all
possible parameters

§ Guaranteed to hold
after method calls for
supplied parameters

Christoph Matheja – 02245 – Program Verification

Postconditions

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

{
var y: Int
y := x + x
r := x + y

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

check: r == 3 * x

learn: z == 3 * 7

33

§ Some implementations
do not work for
arbitrary inputs

§ A precondition filters
out undesirable inputs

Christoph Matheja – 02245 – Program Verification

Alternative Implementation

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

{
r := x / 2
r := 6 * r

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

x = 7

x = 3

x = 18

34

§ Preconditions specify
on what inputs a
method can be called
- Default: true

Christoph Matheja – 02245 – Program Verification

Preconditions

method triple(x: Int) returns (r: Int)
requires x % 2 == 0
ensures r == 3 * x

{
r := x / 2
r := 6 * r

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

35

§ Preconditions specify
on what inputs a
method can be called
- Default: true

§ Guaranteed at the
beginning of method
implementation

§ Checked before
method calls for
supplied parameters

Christoph Matheja – 02245 – Program Verification

Preconditions

method triple(x: Int) returns (r: Int)
requires x % 2 == 0
ensures r == 3 * x

{
r := x / 2
r := 6 * r

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

r == 3 * x for even x

7 % 2 == 1

36

Write at least two Viper implementations for the method below that verify.
Try to find one that does not compute the maximum.

Christoph Matheja – 02245 – Program Verification

Exercise

method max(x: Int, y: Int) returns (r: Int)
ensures r >= x
ensures r >= y // conjunction of postconditions

{
// TODO

}

37

Solution

Christoph Matheja – 02245 – Program Verification

method max(x: Int, y: Int)
returns (r: Int)
ensures r >= x
ensures r >= y

{
if (x >= y) {

r := x
} else {

r := y
}

}

method max(x: Int, y: Int)
returns (r: Int)
ensures r >= x
ensures r >= y

{
r := x*x + y*y

}

38Christoph Matheja – 02245 – Program Verification

Contracts

method triple(x: Int) returns (r: Int)
requires x % 2 == 0
ensures r == 3 * x

{
// implementation
r := x / 2
r := 6 * r

}

A method contract consist of the method’s
§ name,
§ input and output parameters, and
§ pre- and postconditions.

Contracts must be
upheld by method calls
and implementations.

method client()
{

triple(7)
// violates precond.

}

39

§ Implementation details
are often irrelevant

§ Contracts may
- require more than an

implementation needs
- ensure less than an

implementation gives

Christoph Matheja – 02245 – Program Verification

Underspecification

method triple(x: Int) returns (r: Int)
requires x > 3
ensures r > x

{
r := 3 * x

}

Give another contract
implementation.

40

§ Implementation details
are often irrelevant

§ Contracts may
- require more than an

implementation needs
- ensure less than an

implementation gives

Christoph Matheja – 02245 – Program Verification

Underspecification

method triple(x: Int) returns (r: Int)
requires x > 3
ensures r > x

{
r := 3 * x

}

Give another contract
implementation.

method triple(x: Int) returns (r: Int)
requires x > 3
ensures r > x

{
r := x + 1

}

41

Verifying Method Calls

Christoph Matheja – 02245 – Program Verification

method triple(x: Int) returns (r: Int)
requires x > 0
ensures r > x

{
r := 3 * x

}

method client() {
var z: Int
z := triple(7)
assert z > 5
assert z == 21

}
What is happening here?

42

Modular Verification
§ Inspect method contracts
§ Do not inspect method

implementations
§ Design decision

Christoph Matheja – 02245 – Program Verification

Verifying Method Calls

method triple(x: Int) returns (r: Int)
requires x > 0
ensures r > x

{
r := 3 * x

}

method client() {
var z: Int
z := triple(7)
assert z > 5
assert z == 21

}

What are pros and
cons of using modular
verification?

correct; unclear without
looking at implementation

43

Modular Verification
§ Inspect method contracts
§ Do not inspect method

implementations
§ Design decision

Pros:
§ Avoid client re-verification if

implementation changes
§ Respects the information hiding

principle (encapsulation)
§ Handling of recursion
Cons:
§ False negatives (incompleteness)
§ Need to write more contracts

Christoph Matheja – 02245 – Program Verification

Verifying Method Calls

method triple(x: Int) returns (r: Int)
requires x > 0
ensures r > x

{
r := 3 * x

}

method client() {
var z: Int
z := triple(7)
assert z > 5
assert z == 21

}
correct; unclear without
looking at implementation

44

§ Contracts without Implementations
- abstract from hard-to-verify code
- abstract from unknown implementation

§ Verification and good software
engineering facilitate each other
- Incremental development by refinement
- Contracts become simpler if every

method has a single responsibility
- Avoid premature optimizations

Christoph Matheja – 02245 – Program Verification

Abstract Methods

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

method isqrt(x: Int) returns (r: Int)
requires x >= 0
ensures x >= r * r
ensures x < (r+1) * (r+1)

method foo(a: Int) returns (b: Int)
requires a > 0
ensures b > a

{
b := isqrt(a)
b := triple(a)

}

45

Consider the method maxSum with the following signature:

maxSum is supposed to store the sum of x and y in variable sum and the maximum of x and y in
variable max, respectively.
a) Define a reasonable contract for maxSum.
b) Implement a method that calls maxSum on 1723 and 42. Test your contract by adding assertions

after the call. Improve your contract if any assertion fails.
c) Implement maxSum.
Now, consider a method reconstructMaxSum that tries to determine the values of maxSum's input
parameters from the output parameters, i.e. it reconstructs x and y from sum and max.
d) Write an abstract method with a postcondition specifying the behaviour of reconstructMaxSum.
e) Can you give an implementation of reconstructMaxSum? If not, can you implement it after

adding a precondition?
f) Write a client to test your implementation of reconstructMaxSum.

Christoph Matheja – 02245 – Program Verification

Exercise

method maxSum(x: Int, y: Int) returns (sum: Int, max: Int)

46

Solutions

Christoph Matheja – 02245 – Program Verification

method maxSum(x: Int, y: Int)
returns (sum: Int, max: Int)
ensures sum == x + y
ensures x >= y ==> max == x
ensures x < y ==> max == y

{
sum := x + y
if (x > y) {
max := x

} else {
max := y

}
}

method test()
{
var s: Int
var m: Int
s, m := maxSum(1723, 42)
assert s == 1765 && m == 1723

}

47Christoph Matheja – 02245 – Program Verification

More abstract methods

method unsound(x: Int)
returns (r: Int)
ensures r != r

method test() {
var a: Int
a := unsound(17)
assert 2 != 2

}

48

§ Trusted code base: code that is not
checked by the verifier

§ Danger of unsoundness: trusted
inconsistencies may cause false positives

§ Requires separate correctness arguments

§ Methods are trusted until implemented

Christoph Matheja – 02245 – Program Verification

More abstract methods

method unsound(x: Int)
returns (r: Int)
ensures r != r

method test() {
var a: Int
a := unsound(17)
assert 2 != 2

}

49Christoph Matheja – 02245 – Program Verification

Wrap-up: Informal Overview

50

§ Specification mechanisms
- Assertions
- Pre- and postconditions
- Underspecification

§ Using an automated verifier
- Modular reasoning with contracts
- Abstract methods
- Soundness and completeness issues
- Trusted code base

§ Verification and good software engineering facilitate each other
- Information hiding, single responsibility principle
- Incremental development

Christoph Matheja – 02245 – Program Verification

Wrap-up: Informal Overview

51

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a
first verifierSMT solvers

Foundational
Reasoning
Principles

Loops and
procedures

Advanced
data types

Heaps and
objects

Abstraction in
specifications

Permission
models

Frontends,
Extensions

52

Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification

53

The Program Verification Task

Christoph Matheja – 02245 – Program Verification

Given a program

and a specification spec,

give a proof

that all program executions

comply with spec

fn abs(x:i32) -> i32 {
if x >= 0 {
return x

} else {
return -x

}
}

spec: abs(x) returns |x|

Does every execution
comply with spec?

54

Verifying abs(x)

Christoph Matheja – 02245 – Program Verification

fn abs(x:i32) -> i32 {
if x >= 0 {
return x

} else {
return -x

}
}

spec: abs(x) returns |x|

// Viper model of abs(x)
method abs(x: Int) returns (r: Int)
ensures x >= 0 ==> r == x
ensures x <= 0 ==> r == -x

{
if (x < 0) { r := -x } else { r := x }

}

i32: 32-bit integers in two’s complement!

i32::MIN is -2_147_483_648i32
i32::MAX is 2_147_483_647i32

abs(i32::MIN) == ???
Problem: Viper model does
not capture the semantics
of the Rust program

55

Refined verification of abs(x)

Christoph Matheja – 02245 – Program Verification

define i32MIN (-2147483648)
define i32MAX (2147483647)

method abs(x: Int) returns (r: Int)
requires i32MIN <= x && x <= i32MAX
ensures i32MIN <= r && r <= i32MAX
ensures x >= 0 ==> r == x
ensures x <= 0 ==> r == -x

{
if (x < 0) { r := -x } else { r := x }

}

56

Refined specification for abs(x)

Christoph Matheja – 02245 – Program Verification

define i32MIN (-2147483648)
define i32MAX (2147483647)

method abs(x: Int) returns (r: Int)
requires i32MIN <= x && x <= i32MAX
requires x != i32MIN
ensures i32MIN <= r && r <= i32MAX
ensures x >= 0 ==> r == x
ensures x <= 0 ==> r == -x

{
if (x < 0) { r := -x } else { r := x }

}

57Christoph Matheja – 02245 – Program Verification

Verification must be rooted in rigorous mathematics

Given a program

and a specification spec,

give a proof

that all program executions

comply with spec

semantics

formal logic

automated provers

program logics Floyd-Hoare logic

58

Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification

59

Program states assign values to variables in Var

Program semantics describes how states evolve during program execution

Christoph Matheja – 02245 – Program Verification

Making it formal

var y; y := x + 7; r := x + y

initial state final state

60

Predicates capture properties of program states

Christoph Matheja – 02245 – Program Verification

Making it formal

Logical characterization

x != 0

Set characterization

61

Floyd-Hoare triples capture properties of (possibly infinitely many) executions

Christoph Matheja – 02245 – Program Verification

Making it formal

acceptable initial states acceptable final states

{ x > 0 }
var y;
y := x + 7;
r := x + y

{ r > y }

method foo(x: Int)
returns (r: Int)
requires x > 0
ensures r > y

{
var y: Int
y := x + 7
r := x + y

}

§ Implicit I/O parameters

§ Omit types (only Int)

§ Moved pre- and postcondition

62

Making it formal

Christoph Matheja – 02245 – Program Verification

The triple { Pre } S { Post } is valid if and only if
when program S is started in any state in Pre,

then S terminates in a state in Post.

S

63

Which pictures correspond to valid Floyd-Hoare triples?

Christoph Matheja – 02245 – Program Verification

{ Pre } S { Post } is valid iff when program S is started in any state in Pre, then S terminates in a state in Post.

64

Solution

Christoph Matheja – 02245 – Program Verification

{ Pre } S { Post } is valid iff when program S is started in any state in Pre, then S terminates in a state in Post.

65

Which triples are valid?

Christoph Matheja – 02245 – Program Verification

{ x == 1 }
y := 2 * x + 1
{ y < 42 }

{ x == 1 }
y := 2 * x + 1
{ y > 0 }

{ x == 1 }
y := 2 * x + 1
{ true }

{ x == 1 }
y := 2 * x + 1
{ y == 3 && x == 1 }

{ x == 1 }
y := 2 * x + 1
{ y >= 3 }

{ x == 1 }
y := 2 * x + 1
{ y <= 17 }

{ false }
y := 2 * x + 1
{ y <= 17 }

{ x + x <= x }
y := 2 * x + 1
{ y <= 17 }

{ x == 5 || x == 7 }
y := 2 * x + 1
{ y <= 17 }

{ x < 3 }
y := 2 * x + 1
{ y <= 17 }

66

Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification

67

§ Argue as rigorously as possible that the Floyd-Hoare triple described by the
following Viper method is valid.

§ Hint: annotate the file 03-quintuple.vpr

Christoph Matheja – 02245 – Program Verification

Reasoning about triples

method quintuple(x: Int) returns (r: Int)
requires x > 0
ensures r > 4 * x

{
var y: Int
y := 2 * x
var z: Int
z := 3 * x
r := y + z

}

68

§ Argue as rigorously as possible that the Floyd-Hoare triple described by the
following Viper method is valid.

Christoph Matheja – 02245 – Program Verification

Solution

method quintuple(x: Int) returns (r: Int)
requires x > 0
ensures r > 4 * x

{
var y: Int
y := 2 * x
var z: Int
z := 3 * x
r := y + z

}

{ x > 0 }
var y;
y := 2 * x
var z;
z := 3 * x;
r := y + z

{ r > 4 * x }

69

§ Determine a verification condition VC

- VC is a predicate

- VC is valid iff it is true for all states

§ Soundness: VC is valid à triple is valid

§ Completeness: triple is valid à VC is valid

§ Predicate transformers describe how
predicates evolve during program execution

Christoph Matheja – 02245 – Program Verification

How do we systematically prove a triple valid?
Automated verifier

Front-end

Generation of
proof obligations

SMT solver

...

70

Forward Reasoning

Christoph Matheja – 02245 – Program Verification

{ Post } { Pre } S

SP(Pre, S)

Forward VC: is the strongest postcondition SP(Pre, S)
(all final states that we can reach from Pre)
of Pre and program S contained in Post?

71

Informal Forward Reasoning

Christoph Matheja – 02245 – Program Verification

{ x > 0 }

var y;

{ x > 0 }

y := x + 7;

{ x > 0 && y == x + 7 }

r := x + y

{ x > 0 && y == x+7 && r == x+y }

{ r > y }

y will have some value

y will be x + 7

y will be x + y
if r == x + y
and x > 0
then r > y

Are all final states that we can reach
from Pre contained in Post?

72

Backward Reasoning

Christoph Matheja – 02245 – Program Verification

{ Post } { Pre } S

WP(S, Post)

Backward VC: is Pre included in the weakest precondition WP(S, Post)
(all initial states from which we must terminate in Post)
of program S and Post?

execution

reasoning

73

Informal Backward Reasoning

Christoph Matheja – 02245 – Program Verification

{ x > 0 }

{ forall y :: x > 0 }

var y;

{ x > 0 }

y := x + 7;

{ x + y > y}

r := x + y

{ r > y }

y could have any
value before its

declaration

x + y must have been
greater than y before

this is true if
x > 0

Is Pre included in all initial states from
which we must terminate in Post?

whatever we assign
to y, we have x > 0

74

x is a variable in Var z is a constant in Int

Christoph Matheja – 02245 – Program Verification

PL0: a first programming language

Statements in PL0
S ::= var x | x := a | S;S | S [] S | assert P | assume P

Arithmetic expressions
a ::= x | z | a + a | a – a | a / a | a % a

Boolean expressions
b ::= true | false | a < a | a = a | b && b | b || b | !b | ...

Predicates (incomplete)
P, Q, R ::= b | P && P | P ==> P | exists x :: P | forall x :: P | ...

75

Local variable declarations: var x

Christoph Matheja – 02245 – Program Verification

WP(var x, Q) ::= forall x :: Q

SP(P, var x) ::= exists x :: P

Declares an uninitialized variable x that
overshadows any existing x.

{ x == 5 && y > x }

var x;

{ y > 5 }

{ true }

var x;

{ x >= 0 }

{ x == 0 }

var x;

{ x <= 0 }

76

Assertions: assert R

Christoph Matheja – 02245 – Program Verification

WP(assert R, Q) ::= R && Q

{ x > 7 }

assert x > 5

{ x > 7 }

SP(P, assert R) ::= P && R

Crashes if R does not hold in the current
state; otherwise, no effect.

{ x > 5 }

assert x > 7

{ x > 7 }

77

Sequential composition: S1;S2

Christoph Matheja – 02245 – Program Verification

WP(S1;S2, Q) ::= WP(S1, WP(S2, Q))

SP(P, S1;S2) ::= SP(SP(P,S1), S2)

{ P }

S1;

// post of S1
{ R }
// pre of S2

S2

{ Q }

SP

WP

SP ==>

==> WP First execute S1, then S2.

78

Nondeterministic choice: S1 [] S2

Christoph Matheja – 02245 – Program Verification

WP(S1 [] S2, Q)
::= WP(S1, Q) && WP(S2, Q)

{ x == 7 }

assert x > 0 [] assert y > 0

{ x > 0 }

SP(P, S1 [] S2)
::= SP(P,S1) || SP(P, S2)

Executes either S1 or S2.

{ x > 0 && y > 0 }

assert x*x > 0 [] assert x+y > 0

{ x * x > 0 || x + y > 0 }

{ x > 0 && y > 0 }

assert x > 0 [] assert y > 0

{ x > 0 }

79

Assumptions: assume R

Christoph Matheja – 02245 – Program Verification

WP(assume R, Q) ::= R ==> Q

{ x == 0 }

assume x > 0

{ x > 0 } SP(P, assume R) ::= P && R

Nothing happens if R holds in the
current state; otherwise, .

§ Verification-specific statement
§ Not executable
§ Part of trusted code base

{ x > 0 }

assume x > 5

{ x > 5 }

{ true }

assume false

{ false }

{ x == 1 }

assume x > 0

{ x == 2 }

80

Assignment: x := a

Christoph Matheja – 02245 – Program Verification

WP(x := a, Q) ::= Q[x / a]

{ y > 0 }

x := 17 + y

{ y > 0 && x == 17 + y }

E[x / F]: E where every x is replaced by F

Assigns the value of a (evaluated in the initial
state) to x in the final state.

{ y < 23 }

x := 23

{ y < x }

{ x > 42 }

x := x + 1

{ x > 42 && x == x + 1 }

{ x + 1 > 42 }

x := x + 1

{ x > 42 }

81

Assignment: x := a

Christoph Matheja – 02245 – Program Verification

WP(x := a, Q) ::= Q[x / a]

{ y > 0 }

x := 17 + y

{ y > 0 && x == 17 + y }

SP(P, x := a) ::= P && x == a

E[x / F]: E where every x is replaced by F

Assigns the value of a (evaluated in the initial
state) to x in the final state.

{ y < 23 }

x := 23

{ y < x }

{ x > 42 }

x := x + 1

{ x > 42 && x == x + 1 }

{ x + 1 > 42 }

x := x + 1

{ x > 42 }

82

Assignment: x := a

Christoph Matheja – 02245 – Program Verification

WP(x := a, Q) ::= Q[x / a]

{ y > 0 }

x := 17 + y

{ y > 0 && x == 17 + y }

SP(P, x := a) ::= exists x0 ::
P[x / x0] && x == a[x / x0]

E[x / F]: E where every x is replaced by F

Assigns the value of a (evaluated in the initial
state) to x in the final state.

{ y < 23 }

x := 23

{ y < x }

{ x > 42 }

x := x + 1

{ x > 42 && x == x + 1 }

{ x + 1 > 42 }

x := x + 1

{ x > 42 }

83

Proof annotations via overlapping Floyd-Hoare triples

Christoph Matheja – 02245 – Program Verification

{ x > 0 }

{ 5 * x > 4 * x }

{ 2 * x + 3 * x > 4 * x }

y := 2 * x;

{ y + 3 * x > 4 * x }

z := 3 * x;

{ y + z > 4 * x }

r := y + z

{ r > 4 * x }

valid triple

valid triple

valid triple

upper implies lower

upper implies lower

valid triple

84

§ What is wrong with the following proof?

Christoph Matheja – 02245 – Program Verification

Exercise

{ true }
x := 0;

{ x == 0 }
{ x == 0 && y == 6 }
x := x + 2;

{ x == 2 && y == 6 }
{ x + y == 8 }
y := x + y

{ y == 8 }

85

§ What is wrong with the following proof?

Christoph Matheja – 02245 – Program Verification

Solution

{ true }
x := 0;

{ x == 0 }
{ x == 0 && y == 6 }
x := x + 2;

{ x == 2 && y == 6 }
{ x + y == 8 }
y := x + y

{ y == 8 }

we cannot strengthen preconditions
(by assuming y == 6)

86

Exercise

Left half of room: use WP to check
which triples are valid

Right half of room: use SP to check
which triples are valid

Christoph Matheja – 02245 – Program Verification

{ 0 <= x }
x := x + 1

{ -2 <= x }
y := 0

{ -10 <= x }

{ 0 <= x }
x := x + 1

{ true }
y := 0

{ -10 <= x }

{ x == X && y == Y }
x := Y – X;
y := y – x;
x := x + y

{ x == Y && y == X }

SP(P, x := a) ::= exists x0 :: P[x / x0] && x == a[x / x0]

WP(x := a, Q) ::= Q[x / a]

87

Solution I

Left half of room: use WP to check
which triples are valid

Right half of room: use SP to check
which triples are valid

Christoph Matheja – 02245 – Program Verification

SP(P, x := a) ::= exists x0 :: P[x / x0] && x == a[x / x0]

WP(x := a, Q) ::= Q[x / a]

{ 0 <= x }
{ -2 <= x + 1 }
x := x + 1

{ -2 <= x }
{ -10 <= x }
y := 0

{ -10 <= x }

{ 0 <= x }
x := x + 1

{ exists x0 :: -2 <= x0 && x == x0 + 1 }
{ -2 <= x }
y := 0

{ exists y0 :: -2 <= x && y == 0 }
{ -10 <= x }

88

Solution II

Left half of room: use WP to check
which triples are valid

Right half of room: use SP to check
which triples are valid

Christoph Matheja – 02245 – Program Verification

{ 0 <= x }
x := x + 1

{ true }
{ -10 <= x }
y := 0

{ -10 <= x }

SP(P, x := a) ::= exists x0 :: P[x / x0] && x == a[x / x0]

WP(x := a, Q) ::= Q[x / a]

{ 0 <= x }
x := x + 1

{ exists x0 :: -2 <= x0 && x == x0 + 1 }
{ true }
y := 0

{ exists y0 :: true && y == 0 }
{ -10 <= x }

89

Solution III

Left half of room: use WP to check
which triples are valid

Right half of room: use SP to check
which triples are valid

Christoph Matheja – 02245 – Program Verification

{ x == X && y == Y }
{ y == Y && y – Y == 0 }
{ Y - X + y – (Y – X) == Y

&& y – (Y – X) == X }
x := Y – X;

{ x + y - x == Y && y - x == X }
y := y – x;

{ x + y == Y && y == X }
x := x + y

{ x == Y && y == X }

{ x == X && y == Y }
x := Y – X;

{ exists x0 :: x0 == X && y == Y
&& x == Y - X }

y := y – x;
{ exists y0, x0 :: x0 == X && y0 == Y

&& x == Y – X && y == y0 - x }
x := x + y

{ exists x1, y0, x0 :: x0 == X
&& y0 == Y && x1 == Y – X
&& y == y0 – x1 && x == x1 + y }

{ y == Y – (Y – X) && x == Y – X + X }
{ x == Y && y == X }

90

Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification

91

Strongest Post vs. Weakest Pre – Does it matter?

Christoph Matheja – 02245 – Program Verification

92

Strongest Post vs. Weakest Pre – Does it matter?

Christoph Matheja – 02245 – Program Verification

{ x == 0 } assert x < 0 { x == 1 }

SP(x == 0, assert x < 0) ==> x == 1
=
(x == 0 && x < 0) ==> x == 1

// valid

Total correctness:
Pre ==> WP(S, Post) valid

iff { Pre } S { Post } valid
iff when program S is started in any state in Pre,

then S terminates in a state in Post.

x == 0 ==> WP(assert x < 0, x == 1)
=
x == 0 ==> (x < 0 && x == 1)

// not valid

Partial correctness:
SP(Pre, S) valid

iff when program S is started in any state in Pre
and terminates without crashing,

then S terminates in a state in Post.

93

Wrap-up

Christoph Matheja – 02245 – Program Verification

94

Wrap-up

Christoph Matheja – 02245 – Program Verification

{ Pre }
S

{ Post }

method foo(...)
returns (...)
requires Pre
ensures Post

{
S

}

Verification condition
(total correctness)
Pre ==> WP(S, Post) valid?

Verification condition
(partial correctness)
SP(S, Post) ==> Pre valid?

Recap: see formalization on webpage

95

source code
annotated with
specifications

§ Viper language

§ WP (our preference)
§ SP (used later)

§ next lecture

Christoph Matheja – 02245 – Program Verification

Where are we?

feedback

Automated verifier

Front-end

Intermediate Verification
Language

Intermediate Verification
Language

Generation of
proof obligations

SMT solver

96

§ Find groups of 2-3 for exercises and projects

§ Submit group members via online form

§ Take 5 min to give (anonymous) feedback

§ I will try to incorporate your feedback in upcoming lectures J

Christoph Matheja – 02245 – Program Verification

Before you leave...

https://forms.gle/qevbHiyQHEM1zjR4A

https://forms.gle/qevbHiyQHEM1zjR4A

