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Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started
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How much confidence do we have in computer systems?

no confidence

more confidence

extensive testing

Testing is insufficient

§ 1994 Intel® Pentium® Floating-point Division bug

§ Estimate: 1 in 9 billion floating-point divisions inaccurate

§ Issue: missing entries in the lookup table

§ Recall losses: $475 million (> 5 billion DKK in 2019)

§ Bug was detected during experiments on number theory
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How much confidence do we have in computer systems?

no confidence

more confidence

extensive testing

§ TimSort: default sorting algorithm in OpenJDK and Android SDK

§ Certain large arrays (>= 67M) lead to index-out-of-bounds errors

§ Multiple attempts to fix related errors were ineffective

Program testing can be very effective to 
show the presence of bugs, but it is 
hopelessly inadequate for showing their 
absence.

Edsger W. Dijkstra
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How much confidence do we have in computer systems?
The only effective way to raise the 
confidence level of a program is to give 
a                   of its correctness.

Edsger W. Dijkstra

convincing proof

no confidence

more confidence

extensive testing

correctness arguments

At the beginning of 
each loop iteration:

credits: Cormen et al., Introduction to Algorithms, 2009 
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Textbook-style correctness arguments are insufficient
§ Binary search in java.util.Arrays (2006)
§ Faithful implementation of algorithm from 

Programming Pearls, Bentley, 1986

Christoph Matheja, Peter Müller – Program Verification

public static int binarySearch(
int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (low <= high) {

int midVal = a[mid];

if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found

}

int mid = (low + high) / 2;

Is this implementation correct?
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Textbook-style correctness arguments are insufficient
§ Binary search in java.util.Arrays (2006)
§ Faithful implementation of algorithm from 

Programming Pearls, Bentley, 1986

§ No! mid might overflow for large arrays!

§ It was inconceivable at the time that someone 
would use arrays with > 2!" elements

§ Bug remained in the standard library for > 9 years

Christoph Matheja, Peter Müller – Program Verification

public static int binarySearch(
int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (low <= high) {

int midVal = a[mid];

if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found

}

int mid = (low + high) / 2;

Is this implementation correct?
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How much confidence do we have in computer systems?
The only effective way to raise the 
confidence level of a program is to give 
a                   of its correctness.

Edsger W. Dijkstra

convincing proof

no confidence

more confidence

extensive testing

correctness proofs

correctness arguments

All 7 claimed invariants turned out to be incorrect!
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How much confidence do we have in computer systems?

Christoph Matheja – 02245 – Program Verification

machine-checked proofs

extensive testing

correctness proofs

our focus: deductive verification tools

source code

specification

verification
technology

no confidence

more confidence

correctness arguments
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§ Success stories:
- CompCert: formally verified C compiler (2008)
- seL4: formally verified high-performance operating system microkernel (2009)
- EveryCrypt: formally verified crypto library (2020)

§ Strengths:
- Can handle complex systems and properties
- Well-established trusted code base

§ Weaknesses
- Requires expert knowledge
- Very labor-intensive (CompCert: > 6 person years)
- Possible detachment from production code or vendor lock-in

Christoph Matheja – 02245 – Program Verification

Interactive verification
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§ Idea: “use verification like compilation”
- Specifications take the form of source code annotations
- Analogies: TypeScript, Rust ownership & traits, Python type hints

§ Strengths:
- Substantially less effort than interactive verification
- Integrates into existing development processes
- More annotations è more correctness guarantees

§ Weaknesses:
- Less expressive than interactive verification
- May produce false positives (due to undecidability)
- Still requires effort and expertise

Christoph Matheja – 02245 – Program Verification

Automated (or auto-active) Verification
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Prusti – a Rust Verifier

(more examples in teaser video)(live demo)
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Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started

Christoph Matheja – 02245 – Program Verification
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source code 
annotated with 
specifications

automated verifier

Course objectives

Christoph Matheja – 02245 – Program Verification

How does this work?
How do we apply and implement this?

How to specify properties?

How to write good specifications?
Why these results?

feedback

What does this tell us? How do we get this? 
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source code 
annotated with 
specifications

§ Automated verifiers are often 
implemented as a tool stack

§ Stepwise compilation of 
programs into logical formulas 
(and back for error reporting)

§ Each transformation deals 
with one verification problem

§ Requirements:
- reasoning principles
- verification methodologies
- engineering practices

Christoph Matheja – 02245 – Program Verification

Architecture of automated program verifiers

feedback

Automated verifier

Front-end

Intermediate Verification 
Language

Intermediate Verification 
Language

Generation of 
proof obligations

SMT solver
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source code 
annotated with 
specifications

1. We learn how to build and use a 
verification tool for a small 
programming language
- Core reasoning principles
- Generation of proof obligations
- Working with SMT solvers
- Error reporting

2. We extend the language by 
advanced features
- Verification challenges
- Advanced reasoning and 

specification principles
- Automation via encoding to 

lower levels

Christoph Matheja – 02245 – Program Verification

Roadmap

feedback

Automated verifier

Front-end

Intermediate Verification 
Language

Intermediate Verification 
Language

Generation of 
proof obligations

SMT solver

1

1

1

11

2

2

2

2
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Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a 
first verifierSMT solvers

Foundational 
Reasoning 
Principles

Loops and 
procedures

Advanced 
data types

Heaps and 
objects

Abstraction in 
specifications

Permission 
models

Frontends,
Extensions
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Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started

Christoph Matheja – 02245 – Program Verification
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§ Website: http://courses.compute.dtu.dk/02245
- Course material (slides + webpage) is self-contained; reading references is optional
- Material will be available at least one day before each lecture

§ 7.5 ETCS course è involves homework

§ Classes
- Lectures: Thursday 13:00 – 17:00, room B321-H033
- Question time (for help with material, homework, etc.)

• Physical: Monday 13:00 – 14:00, room B321-017
• Online: Tuesday 18:00 – 19:00, MS Teams

Christoph Matheja – 02245 – Program Verification

Infrastructure

http://courses.compute.dtu.dk/02245
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§ Many in-class exercises involve verification tools
- Make sure to have them at hand when coming to class
- Typically 5 – 30 min for each exercise
- Teamwork is encouraged 

§ Discuss exercise solutions

§ Feel free to ask questions at any time

§ Feedback is highly appreciated
- This is new material, your feedback will improve it J

Christoph Matheja – 02245 – Program Verification

Lectures are meant to be interactive (red slides and boxes)

Think about questions in these 
boxes before the lecture



22

§ Completeness and quality of group projects (size: 2-3)
- 15% Homework: preparation for projects

• Weekly deadline until project release
• Solutions will be marked and discussed in class

- 40% Project A: build a verification tool from scratch
- 60% Project B: design a new verification methodology
- Yes, the total is 115% J
- Project deadline: November 27, 23:59
- No reports but submissions must be well-documented and justified

§ Individual oral exam
- Project presentation (ca. 7min, no slides needed)
- Discussion of projects and course content (ca. 20 min)

Christoph Matheja – 02245 – Program Verification

Examination
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Outline
1. Why Program Verification?

2. Course Overview

3. Course Organization

4. Getting Started

Christoph Matheja – 02245 – Program Verification
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Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a 
first verifierSMT solvers

Foundational 
Reasoning 
Principles

Loops and 
procedures

Advanced 
data types

Heaps and 
objects

Abstraction in 
specifications

Permission 
models

Frontends,
Extensions

But first: using a verifier
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§ Viper language 
- Models verification problems
- Some statements are not executable

§ Two verification backends
- Carbon (close to what you will build)
- Silicon 

§ For now: Programming language 
with a built-in verifier

§ Later: Automate new methodologies

Christoph Matheja – 02245 – Program Verification

The Viper Verification Framework

Rust
(ETH, UBC, DTU)

Go
(ETH Zürich)

Java
(U. Twente)

Intermediate Language

Verifier (carbon)

Boogie (Microsoft)

Z3
(Microsoft)
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§ Install Java 11+ (64-bit)
- set Java_HOME and PATH

§ Install Visual Studio Code (64-bit)

§ In Visual Studio Code:
- Open the extensions browser 

(⇧+Ctrl+X or ⇧+⌘+X)
- Search for Viper
- Install the extension and restart

§ Create and verify the file test.vpr (right)

§ Switch to carbon and verify test.vpr again
- click on silicon (bottom left) to switch

Christoph Matheja, Peter Müller – Program Verification

Installing Viper

check that no errors 
are reported here

// filename: test.vpr
method test() {}

https://www.oracle.com/java/technologies/javase-downloads.html
https://code.visualstudio.com/
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Viper methods

Christoph Matheja – 02245 – Program Verification

method triple(x: Int) returns (r: Int) 
{

r := 3 * x
}
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Viper methods

Christoph Matheja – 02245 – Program Verification

method triple(x: Int, flag: Bool) 
returns (r: Int) 

{
if (flag) {

r := 3 * x
} else {

var y: Int
y := x + x
r := x + y

}
}

all Viper statements are put in methods read-only input parameters

read-write output parameters

no explicit return statements

local variable declaration
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§ assert expr tests if 
expr evaluates to true
- Yes: no effect
- No: runtime error

§ Testing: no assertion 
error for chosen inputs

§ Verification: no assertion 
error for all inputs

Christoph Matheja – 02245 – Program Verification

Assertions

method triple(x: Int, flag: Bool) 
returns (r: Int) 

{
if (flag) {

r := 3 * x
assert r > 0

} else {
var y: Int
y := x + x
r := x + y
assert r == 3 * x

}
} Which assertions hold?
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§ assert expr tests if 
expr evaluates to true
- Yes: no effect
- No: runtime error

§ Testing: no assertion 
error for chosen inputs

§ Verification: no assertion 
error for all inputs

Christoph Matheja – 02245 – Program Verification

Assertions

method triple(x: Int, flag: Bool) 
returns (r: Int) 

{
if (flag) {

r := 3 * x
assert r > 0

} else {
var y: Int
y := x + x
r := x + y
assert r == 3 * x

}
} Which assertions hold?
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§ Postconditions specify 
how returned outputs 
are related to inputs
- Default: true

Christoph Matheja – 02245 – Program Verification

Postconditions

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

{
var y: Int
y := x + x
r := x + y

}

method client() {
var z: Int
z := triple(7) 
assert z == 21

}
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§ Postconditions specify 
how returned outputs 
are related to inputs
- Default: true

§ Checked against 
implementation for all 
possible parameters

§ Guaranteed to hold 
after method calls for 
supplied parameters

Christoph Matheja – 02245 – Program Verification

Postconditions

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

{
var y: Int
y := x + x
r := x + y

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

check: r == 3 * x

learn: z == 3 * 7
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§ Some implementations 
do not work for 
arbitrary inputs

§ A precondition filters 
out undesirable inputs

Christoph Matheja – 02245 – Program Verification

Alternative Implementation

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

{ 
r := x / 2
r := 6 * r

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

x = 7

x = 3

x = 18
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§ Preconditions specify 
on what inputs a 
method can be called
- Default: true

Christoph Matheja – 02245 – Program Verification

Preconditions

method triple(x: Int) returns (r: Int)
requires x % 2 == 0
ensures r == 3 * x

{ 
r := x / 2
r := 6 * r

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}
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§ Preconditions specify 
on what inputs a 
method can be called
- Default: true

§ Guaranteed at the 
beginning of method 
implementation

§ Checked before 
method calls for 
supplied parameters

Christoph Matheja – 02245 – Program Verification

Preconditions

method triple(x: Int) returns (r: Int)
requires x % 2 == 0
ensures r == 3 * x

{ 
r := x / 2
r := 6 * r

}

method client() {
var z: Int
z := triple(7)
assert z == 21

}

r == 3 * x for even x

7 % 2 == 1
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Write at least two Viper implementations for the method below that verify.
Try to find one that does not compute the maximum.

Christoph Matheja – 02245 – Program Verification

Exercise

method max(x: Int, y: Int) returns (r: Int)
ensures r >= x
ensures r >= y // conjunction of postconditions

{
// TODO

}
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Solution

Christoph Matheja – 02245 – Program Verification

method max(x: Int, y: Int) 
returns (r: Int)
ensures r >= x
ensures r >= y

{
if (x >= y) {

r := x
} else {

r := y
}

}

method max(x: Int, y: Int) 
returns (r: Int)
ensures r >= x
ensures r >= y

{
r := x*x + y*y

}
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Contracts

method triple(x: Int) returns (r: Int)
requires x % 2 == 0
ensures r == 3 * x

{ 
// implementation
r := x / 2 
r := 6 * r

}

A method contract consist of the method’s
§ name,
§ input and output parameters, and
§ pre- and postconditions.

Contracts must be 
upheld by method calls 
and implementations.

method client()
{

triple(7)
// violates precond.

}
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§ Implementation details 
are often irrelevant

§ Contracts may
- require more than an 

implementation needs
- ensure less than an 

implementation gives 

Christoph Matheja – 02245 – Program Verification

Underspecification

method triple(x: Int) returns (r: Int)
requires x > 3
ensures r > x

{
r := 3 * x

}

Give another contract 
implementation.
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§ Implementation details 
are often irrelevant

§ Contracts may
- require more than an 

implementation needs
- ensure less than an 

implementation gives 

Christoph Matheja – 02245 – Program Verification

Underspecification

method triple(x: Int) returns (r: Int)
requires x > 3
ensures r > x

{
r := 3 * x

}

Give another contract 
implementation.

method triple(x: Int) returns (r: Int)
requires x > 3
ensures r > x

{
r := x + 1

}
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Verifying Method Calls

Christoph Matheja – 02245 – Program Verification

method triple(x: Int) returns (r: Int)
requires x > 0
ensures r > x

{
r := 3 * x

}

method client() {
var z: Int
z := triple(7)
assert z > 5
assert z == 21

}
What is happening here?
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Modular Verification
§ Inspect method contracts
§ Do not inspect method 

implementations
§ Design decision

Christoph Matheja – 02245 – Program Verification

Verifying Method Calls

method triple(x: Int) returns (r: Int)
requires x > 0
ensures r > x

{
r := 3 * x

}

method client() {
var z: Int
z := triple(7)
assert z > 5
assert z == 21

}

What are pros and 
cons of using modular 
verification?

correct; unclear without 
looking at implementation
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Modular Verification
§ Inspect method contracts
§ Do not inspect method 

implementations
§ Design decision

Pros:
§ Avoid client re-verification if 

implementation changes
§ Respects the information hiding

principle (encapsulation)
§ Handling of recursion
Cons:
§ False negatives (incompleteness)
§ Need to write more contracts

Christoph Matheja – 02245 – Program Verification

Verifying Method Calls

method triple(x: Int) returns (r: Int)
requires x > 0
ensures r > x

{
r := 3 * x

}

method client() {
var z: Int
z := triple(7)
assert z > 5
assert z == 21

}
correct; unclear without 
looking at implementation
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§ Contracts without Implementations
- abstract from hard-to-verify code
- abstract from unknown implementation

§ Verification and good software 
engineering facilitate each other
- Incremental development by refinement
- Contracts become simpler if every 

method has a single responsibility
- Avoid premature optimizations

Christoph Matheja – 02245 – Program Verification

Abstract Methods 

method triple(x: Int) returns (r: Int)
ensures r == 3 * x

method isqrt(x: Int) returns (r: Int)
requires x >= 0
ensures x >= r * r
ensures x < (r+1) * (r+1)

method foo(a: Int) returns (b: Int)
requires a > 0
ensures b > a

{
b := isqrt(a)
b := triple(a)

}
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Consider the method maxSum with the following signature:

maxSum is supposed to store the sum of x and y in variable sum and the maximum of x and y in 
variable max, respectively.
a) Define a reasonable contract for maxSum.
b) Implement a method that calls maxSum on 1723 and 42. Test your contract by adding assertions 

after the call. Improve your contract if any assertion fails.
c) Implement maxSum.
Now, consider a method reconstructMaxSum that tries to determine the values of maxSum's input 
parameters from the output parameters, i.e. it reconstructs x and y from sum and max.
d) Write an abstract method with a postcondition specifying the behaviour of reconstructMaxSum.
e) Can you give an implementation of reconstructMaxSum? If not, can you implement it after 

adding a precondition?
f) Write a client to test your implementation of reconstructMaxSum.

Christoph Matheja – 02245 – Program Verification

Exercise

method maxSum(x: Int, y: Int) returns (sum: Int, max: Int)
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Solutions

Christoph Matheja – 02245 – Program Verification

method maxSum(x: Int, y: Int) 
returns (sum: Int, max: Int)
ensures sum == x + y
ensures x >= y ==> max == x
ensures x < y ==> max == y

{
sum := x + y 
if (x > y) {
max := x

} else {
max := y

}
}

method test() 
{
var s: Int
var m: Int
s, m := maxSum(1723, 42)
assert s == 1765 && m == 1723

}
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More abstract methods

method unsound(x: Int) 
returns (r: Int)
ensures r != r

method test() {
var a: Int
a := unsound(17)
assert 2 != 2

}
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§ Trusted code base: code that is not 
checked by the verifier

§ Danger of unsoundness: trusted 
inconsistencies may cause false positives

§ Requires separate correctness arguments

§ Methods are trusted until implemented

Christoph Matheja – 02245 – Program Verification

More abstract methods

method unsound(x: Int) 
returns (r: Int)
ensures r != r

method test() {
var a: Int
a := unsound(17)
assert 2 != 2

}



49Christoph Matheja – 02245 – Program Verification

Wrap-up: Informal Overview
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§ Specification mechanisms
- Assertions
- Pre- and postconditions
- Underspecification

§ Using an automated verifier
- Modular reasoning with contracts
- Abstract methods
- Soundness and completeness issues
- Trusted code base

§ Verification and good software engineering facilitate each other
- Information hiding, single responsibility principle
- Incremental development

Christoph Matheja – 02245 – Program Verification

Wrap-up: Informal Overview



51

Tentative course outline

Christoph Matheja – 02245 – Program Verification

Building a 
first verifierSMT solvers

Foundational 
Reasoning 
Principles

Loops and 
procedures

Advanced 
data types

Heaps and 
objects

Abstraction in 
specifications

Permission 
models

Frontends,
Extensions
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Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification
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The Program Verification Task

Christoph Matheja – 02245 – Program Verification

Given a program

and a specification spec,

give a proof

that all program executions

comply with spec

fn abs(x:i32) -> i32 {
if x >= 0 {
return x

} else {
return -x

}
}

spec: abs(x) returns |x|

Does every execution 
comply with spec?
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Verifying abs(x)

Christoph Matheja – 02245 – Program Verification

fn abs(x:i32) -> i32 {
if x >= 0 {
return x

} else {
return -x

}
}

spec: abs(x) returns |x|

// Viper model of abs(x)
method abs(x: Int) returns (r: Int)
ensures x >= 0 ==> r == x
ensures x <= 0 ==> r == -x

{
if (x < 0) { r := -x } else { r := x }

}

i32: 32-bit integers in two’s complement!

i32::MIN    is -2_147_483_648i32
i32::MAX    is 2_147_483_647i32

abs(i32::MIN) == ???
Problem: Viper model does 
not capture the semantics 
of the Rust program
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Refined verification of abs(x)

Christoph Matheja – 02245 – Program Verification

define i32MIN (-2147483648)
define i32MAX (2147483647)

method abs(x: Int) returns (r: Int)
requires i32MIN <= x && x <= i32MAX
ensures i32MIN <= r && r <= i32MAX
ensures x >= 0 ==> r == x
ensures x <= 0 ==> r == -x

{
if (x < 0) { r := -x } else { r := x }

}
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Refined specification for abs(x)

Christoph Matheja – 02245 – Program Verification

define i32MIN (-2147483648)
define i32MAX (2147483647)

method abs(x: Int) returns (r: Int)
requires i32MIN <= x && x <= i32MAX
requires x != i32MIN
ensures i32MIN <= r && r <= i32MAX
ensures x >= 0 ==> r == x
ensures x <= 0 ==> r == -x

{
if (x < 0) { r := -x } else { r := x }

}
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Verification must be rooted in rigorous mathematics

Given a program

and a specification spec,

give a proof

that all program executions

comply with spec

semantics

formal logic

automated provers

program logics Floyd-Hoare logic
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Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification
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Program states assign values to variables in Var

Program semantics describes how states evolve during program execution

Christoph Matheja – 02245 – Program Verification

Making it formal

var y;                y := x + 7;                 r := x + y

initial state final state
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Predicates capture properties of program states 

Christoph Matheja – 02245 – Program Verification

Making it formal

Logical characterization

x != 0

Set characterization
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Floyd-Hoare triples capture properties of (possibly infinitely many) executions

Christoph Matheja – 02245 – Program Verification

Making it formal

acceptable initial states acceptable final states

{ x > 0 }
var y;
y := x + 7;
r := x + y

{ r > y }

method foo(x: Int) 
returns (r: Int)
requires x > 0
ensures r > y

{
var y: Int
y := x + 7
r := x + y

}

§ Implicit I/O parameters

§ Omit types (only Int)

§ Moved pre- and postcondition
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Making it formal

Christoph Matheja – 02245 – Program Verification

The triple   { Pre } S { Post }  is valid if and only if
when program S is started in any state in Pre,

then S terminates in a state in Post.

S
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Which pictures correspond to valid Floyd-Hoare triples?

Christoph Matheja – 02245 – Program Verification

{ Pre } S { Post } is valid iff when program S is started in any state in Pre, then S terminates in a state in Post.
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Solution

Christoph Matheja – 02245 – Program Verification

{ Pre } S { Post } is valid iff when program S is started in any state in Pre, then S terminates in a state in Post.
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Which triples are valid?

Christoph Matheja – 02245 – Program Verification

{ x == 1 }
y := 2 * x + 1
{ y < 42 }

{ x == 1 }
y := 2 * x + 1
{ y > 0 }

{ x == 1 }
y := 2 * x + 1
{ true }

{ x == 1 }
y := 2 * x + 1
{ y == 3 && x == 1 }

{ x == 1 }
y := 2 * x + 1
{ y >= 3 }

{ x == 1 }
y := 2 * x + 1
{ y <= 17 }

{ false }
y := 2 * x + 1
{ y <= 17 }

{ x + x <= x }
y := 2 * x + 1
{ y <= 17 }

{ x == 5 || x == 7 }
y := 2 * x + 1
{ y <= 17 }

{ x < 3 }
y := 2 * x + 1
{ y <= 17 }
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Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification
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§ Argue as rigorously as possible that the Floyd-Hoare triple described by the 
following Viper method is valid.

§ Hint: annotate the file 03-quintuple.vpr

Christoph Matheja – 02245 – Program Verification

Reasoning about triples

method quintuple(x: Int) returns (r: Int)
requires x > 0 
ensures r > 4 * x

{
var y: Int
y := 2 * x
var z: Int
z := 3 * x
r := y + z

}
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§ Argue as rigorously as possible that the Floyd-Hoare triple described by the 
following Viper method is valid.

Christoph Matheja – 02245 – Program Verification

Solution

method quintuple(x: Int) returns (r: Int)
requires x > 0 
ensures r > 4 * x

{
var y: Int
y := 2 * x
var z: Int
z := 3 * x
r := y + z

}

{ x > 0 }
var y;
y := 2 * x
var z;
z := 3 * x;
r := y + z

{ r > 4 * x }
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§ Determine a verification condition VC

- VC is a predicate 

- VC is valid iff it is true for all states

§ Soundness: VC is valid à triple is valid

§ Completeness: triple is valid à VC is valid

§ Predicate transformers describe how 
predicates evolve during program execution

Christoph Matheja – 02245 – Program Verification

How do we systematically prove a triple valid?
Automated verifier

Front-end

Generation of 
proof obligations

SMT solver

...
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Forward Reasoning

Christoph Matheja – 02245 – Program Verification

{ Post }  { Pre } S

SP(Pre, S)

Forward VC: is the strongest postcondition SP(Pre, S)
(all final states that we can reach from Pre)
of Pre and program S contained in Post?
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Informal Forward Reasoning
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{ x > 0 }

var y;

{ x > 0 }

y := x + 7;

{ x > 0 && y == x + 7 }

r := x + y

{ x > 0 && y == x+7 && r == x+y }

{ r > y }

y will have some value

y will be x + 7

y will be x + y
if r == x + y
and x > 0
then r > y

Are all final states that we can reach 
from Pre contained in Post?
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Backward Reasoning

Christoph Matheja – 02245 – Program Verification

{ Post }  { Pre } S

WP(S, Post)

Backward VC: is Pre included in the weakest precondition WP(S, Post)
(all initial states from which we must terminate in Post)
of program S and Post?

execution

reasoning
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Informal Backward Reasoning

Christoph Matheja – 02245 – Program Verification

{ x > 0 }

{ forall y :: x > 0 }

var y;

{ x > 0 }

y := x + 7;

{ x + y > y}

r := x + y

{ r > y }

y could have any 
value before its 

declaration

x + y must have been
greater than y before

this is true if
x > 0

Is Pre included in all initial states from 
which we must terminate in Post?

whatever we assign 
to y, we have x > 0
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x is a variable in Var z is a constant in Int

Christoph Matheja – 02245 – Program Verification

PL0: a first programming language

Statements in PL0
S    ::=    var x  |  x := a  |  S;S  |  S [] S  |  assert P  |  assume P

Arithmetic expressions
a    ::=    x  |  z  |  a + a  |  a – a  |  a / a  |  a % a

Boolean expressions
b    ::=    true | false | a < a | a = a | b && b | b || b | !b | ...

Predicates (incomplete)
P, Q, R  ::=  b  |  P && P  |  P ==> P |  exists x :: P  | forall x :: P | ...
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Local variable declarations:  var x
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WP(var x, Q)   ::=   forall x :: Q

SP(P, var x)   ::=   exists x :: P

Declares an uninitialized variable x that 
overshadows any existing x.

{ x == 5 && y > x }

var x;

{ y > 5 }

{ true }

var x;

{ x >= 0 }

{ x == 0 }

var x;

{ x <= 0 }
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Assertions:  assert R
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WP(assert R, Q)  ::=  R && Q

{ x > 7 }

assert x > 5

{ x > 7 }

SP(P, assert R)  ::=  P && R

Crashes if R does not hold in the current 
state; otherwise, no effect.

{ x > 5 }

assert x > 7

{ x > 7 }
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Sequential composition:  S1;S2

Christoph Matheja – 02245 – Program Verification

WP(S1;S2, Q)  ::=  WP(S1, WP(S2, Q))

SP(P, S1;S2)  ::=  SP(SP(P,S1), S2)

{ P }

S1;

// post of S1
{ R }
// pre of S2

S2

{ Q }

SP

WP

SP ==>

==> WP First execute S1, then S2.
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Nondeterministic choice:  S1 [] S2
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WP(S1 [] S2, Q)
::=    WP(S1, Q) && WP(S2, Q)

{ x == 7 }

assert x > 0 [] assert y > 0

{ x > 0 }

SP(P, S1 [] S2)  
::=    SP(P,S1) || SP(P, S2)

Executes either S1 or S2.

{ x > 0 && y > 0 }

assert x*x > 0 [] assert x+y > 0

{ x * x > 0 || x + y > 0 }

{ x > 0 && y > 0 }

assert x > 0 [] assert y > 0

{ x > 0 }
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Assumptions:  assume R
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WP(assume R, Q)  ::=  R ==> Q

{ x == 0 }

assume x > 0

{ x > 0 } SP(P, assume R)  ::=  P && R

Nothing happens if R holds in the 
current state; otherwise, .

§ Verification-specific statement
§ Not executable
§ Part of trusted code base

{ x > 0 }

assume x > 5

{ x > 5 }

{ true }

assume false 

{ false }

{ x == 1 }

assume x > 0 

{ x == 2 }
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Assignment:  x := a
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WP(x := a, Q)  ::=  Q[x / a]

{ y > 0 }

x := 17 + y

{ y > 0 && x == 17 + y }

E[x / F]: E where every x is replaced by F

Assigns the value of a (evaluated in the initial 
state) to x in the final state.

{ y < 23 }

x := 23

{ y < x }

{ x > 42 }

x := x + 1

{ x > 42 && x == x + 1 }

{ x + 1 > 42 }

x := x + 1

{ x > 42 }
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Assignment:  x := a
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WP(x := a, Q)  ::=  Q[x / a]

{ y > 0 }

x := 17 + y

{ y > 0 && x == 17 + y }

SP(P, x := a)  ::=  P && x == a

E[x / F]: E where every x is replaced by F

Assigns the value of a (evaluated in the initial 
state) to x in the final state.

{ y < 23 }

x := 23

{ y < x }

{ x > 42 }

x := x + 1

{ x > 42 && x == x + 1 }

{ x + 1 > 42 }

x := x + 1

{ x > 42 }
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Assignment:  x := a
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WP(x := a, Q)  ::=  Q[x / a]

{ y > 0 }

x := 17 + y

{ y > 0 && x == 17 + y }

SP(P, x := a)  ::=  exists x0 :: 
P[x / x0] && x == a[x / x0]

E[x / F]: E where every x is replaced by F

Assigns the value of a (evaluated in the initial 
state) to x in the final state.

{ y < 23 }

x := 23

{ y < x }

{ x > 42 }

x := x + 1

{ x > 42 && x == x + 1 }

{ x + 1 > 42 }

x := x + 1

{ x > 42 }
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Proof annotations via overlapping Floyd-Hoare triples
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{ x > 0 }

{ 5 * x > 4 * x }

{ 2 * x + 3 * x > 4 * x }

y := 2 * x;

{ y + 3 * x > 4 * x }

z := 3 * x;

{ y + z > 4 * x }

r := y + z

{ r > 4 * x }

valid triple

valid triple

valid triple

upper implies lower

upper implies lower

valid triple
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§ What is wrong with the following proof?
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Exercise

{ true }
x := 0;

{ x == 0 }
{ x == 0 && y == 6 }
x := x + 2;

{ x == 2 && y == 6 }
{ x + y == 8 }
y := x + y 

{ y == 8 }
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§ What is wrong with the following proof?

Christoph Matheja – 02245 – Program Verification

Solution

{ true }
x := 0;

{ x == 0 }
{ x == 0 && y == 6 }
x := x + 2;

{ x == 2 && y == 6 }
{ x + y == 8 }
y := x + y 

{ y == 8 }

we cannot strengthen preconditions
(by assuming y == 6)
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Exercise

Left half of room: use WP to check 
which triples are valid

Right half of room: use SP to check 
which triples are valid

Christoph Matheja – 02245 – Program Verification

{ 0 <= x }
x := x + 1

{ -2 <= x }
y := 0

{ -10 <= x }

{ 0 <= x }
x := x + 1

{ true }
y := 0

{ -10 <= x }

{ x == X && y == Y }
x := Y – X;
y := y – x;
x := x + y 

{ x == Y && y == X }

SP(P, x := a)  ::=  exists x0 :: P[x / x0] && x == a[x / x0]

WP(x := a, Q)  ::=  Q[x / a]



87

Solution I

Left half of room: use WP to check 
which triples are valid

Right half of room: use SP to check 
which triples are valid

Christoph Matheja – 02245 – Program Verification

SP(P, x := a)  ::=  exists x0 :: P[x / x0] && x == a[x / x0]

WP(x := a, Q)  ::=  Q[x / a]

{ 0 <= x }
{ -2 <= x + 1 }
x := x + 1

{ -2 <= x }
{ -10 <= x }
y := 0

{ -10 <= x }

{ 0 <= x }
x := x + 1

{ exists x0 :: -2 <= x0 && x == x0 + 1 }
{ -2 <= x }
y := 0

{ exists y0 :: -2 <= x && y == 0 }
{ -10 <= x }
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Solution II

Left half of room: use WP to check 
which triples are valid

Right half of room: use SP to check 
which triples are valid
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{ 0 <= x }
x := x + 1

{ true }
{ -10 <= x }
y := 0

{ -10 <= x }

SP(P, x := a)  ::=  exists x0 :: P[x / x0] && x == a[x / x0]

WP(x := a, Q)  ::=  Q[x / a]

{ 0 <= x }
x := x + 1

{ exists x0 :: -2 <= x0 && x == x0 + 1 }
{ true }
y := 0

{ exists y0 :: true && y == 0 }
{ -10 <= x }
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Solution III

Left half of room: use WP to check 
which triples are valid

Right half of room: use SP to check 
which triples are valid
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{ x == X && y == Y }
{ y == Y && y – Y == 0 }
{ Y - X + y – (Y – X) == Y 

&& y – (Y – X) == X }
x := Y – X;

{ x + y - x == Y && y - x == X }
y := y – x;

{ x + y == Y && y == X }
x := x + y 

{ x == Y && y == X }

{ x == X && y == Y }
x := Y – X;

{ exists x0 :: x0 == X && y == Y 
&& x == Y - X }

y := y – x;
{ exists y0, x0 :: x0 == X && y0 == Y 

&& x == Y – X && y == y0 - x }
x := x + y 

{ exists x1, y0, x0 :: x0 == X 
&& y0 == Y && x1 == Y – X 
&& y == y0 – x1 && x == x1 + y }

{ y == Y – (Y – X) && x == Y – X + X } 
{ x == Y && y == X }
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Outline
1. Why do we need formal foundations?

2. Formalizing contracts

3. Reasoning about contracts

4. Epilogue

Christoph Matheja – 02245 – Program Verification



91

Strongest Post vs. Weakest Pre – Does it matter?

Christoph Matheja – 02245 – Program Verification



92

Strongest Post vs. Weakest Pre – Does it matter?
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{ x == 0 } assert x < 0 { x == 1 }

SP(x == 0, assert x < 0) ==> x == 1
=
(x == 0 && x < 0) ==> x == 1

// valid

Total correctness:
Pre ==> WP(S, Post) valid

iff    { Pre } S { Post } valid 
iff    when program S is started in any state in Pre,

then S terminates in a state in Post.

x == 0 ==> WP(assert x < 0, x == 1)
=
x == 0 ==> (x < 0 && x == 1)

// not valid

Partial correctness:
SP(Pre, S) valid

iff    when program S is started in any state in Pre
and terminates without crashing,

then S terminates in a state in Post.
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Wrap-up

Christoph Matheja – 02245 – Program Verification
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Wrap-up
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{ Pre }
S

{ Post }

method foo(...) 
returns (...)
requires Pre
ensures Post

{
S

}

Verification condition
(total correctness)
Pre ==> WP(S, Post) valid?

Verification condition
(partial correctness)
SP(S, Post) ==> Pre valid?

Recap: see formalization on webpage
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source code 
annotated with 
specifications

§ Viper language

§ WP (our preference)
§ SP (used later)

§ next lecture

Christoph Matheja – 02245 – Program Verification

Where are we?

feedback

Automated verifier

Front-end

Intermediate Verification 
Language

Intermediate Verification 
Language

Generation of 
proof obligations

SMT solver
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§ Find groups of 2-3 for exercises and projects

§ Submit group members via online form

§ Take 5 min to give (anonymous) feedback

§ I will try to incorporate your feedback in upcoming lectures J

Christoph Matheja – 02245 – Program Verification

Before you leave...

https://forms.gle/qevbHiyQHEM1zjR4A

https://forms.gle/qevbHiyQHEM1zjR4A

